Answer: The correct option is B.
Explanation: There are 2 regions of the solar system.
1) Inner region: There are 4 planets which lie in this region: Mercury, Venus, Earth and Mars. The inner region planets are rocky in nature. The orbit time of these planets around the sun is short. They have 0, 1 or 2 satellites in total. There is no ring system in these planets.
2) Outer region: There are 4 planets which lie in this region: Jupiter, Saturn, Uranus and Neptune. The outer region planets are gaseous in nature. The orbit time of these planets around the sun is long. They have usually more number of satellites around them. Ring system in these planets is very common.
Hence, Mars resides in the inner region of the solar system because it has a rocky surface that one could firmly stand on.
The catalyst is what appears exactly the same at the end and appears early in the equation set. In this case Cl(g).The intermediate appears "intermediately" not at the beginning or at the end, but is made and consumed in the middle. Like ClO(g). A substance that is regenerated in the next is a catalyst and is consumed in the first step. In contrast, when a substance is formed in the first step and is consumed in the next step, then it is known as an intermediate.
You will need to go on yt
Answer: A new model of the atom that described electrons as being in a cloud
Explanation:
Answer: It will be produced 276,3 mg of product
Explanation: The reaction of anthracene (C14H10) and maleic anhydride (C4H2O3) produce a compound named 9,10-dihydroanthracene-9,10-α,β-succinic anhydride (C18H12O3), as described below:
C14H10 + C4H2O3 → C18H12O3
The reaction is already balanced, which means to produce 1 mol of C18H12O3 is necessary 1 mol of anthracene and 1 mol of maleic anhydride.
1 mol of C14H10 equals 178,23 g. As it is used 180 mg of that reagent, we have 0,001 mol of anthracene. With it, the reaction produces 0,001 mol of C18H12O3.
As 1 mol of C18H12O3 equals 276,3 g, the mass produced is 276,3 mg.