Answer:
52.9 KJmol-1
Explanation:
From;
log(k2/k1) = Ea/2.303 * R (1/T1 - 1/T2)
The temperatures must be converted to Kelvin;
T1 = 25° C + 273 = 298 K
T2= 35°C + 273 = 308 K
R= gas constant = 8.314 JK-1mol-1
Substituting values;
log 2 = Ea/2.303 * 8.314 (1/298 - 1/308)
Ea = 52.9 KJmol-1
Answer:
7430.5 Joules (7.4*10^4 Joules)
Explanation:
Q=mc∆T
where Q is energy in Joules.
Now m=250 g
c= 0.386 J/g°C
∆T = 99 - 22 = 77 °C
plugging the values in gives
Q=250*0.386*77=7430.5 Joules
(7.4*10^4 Joules, if 2 significant figures)
Answer:
1-ethyl-2-methyl cyclopropane.
Explanation:
- The structure of the molecule will be as shown in the attached image.
- The molecular formula of the compound is C₆H₁₂.
- It has 3 membered ring with 3 C atoms and two substituents one of them with one C atom (methyl) and the other with 2 C atoms (ethyl).
- The ring consist of 3 C atoms, so its name is cyclo propane.
- We numbering the atoms of the ring that give the ethyl substituent the low no. (1) and then methyl group take no. (2).
- <em>Thus, the name of the compound is 1-ethyl-2-methyl cyclopropane.</em>
Answer:
Explanation:
The strong bases have following properties:
1. In solution, strong bases ionize fully.
2. On dissolving the strong bases in water they produce all hydroxide ion which they have.
3. For strong bases the value of equilibrium constant (Kb ) is large.
4. In general the strong base ionizes completely means concentration of ions are greater means conductivity also greater.
5. For strong bases the value of equilibrium constant (Kb) is large, thus the value of dG0 is very large negative number.
A sodium chloride is like most of the ionic compounds
existing here on earth in which they are composed of having a high melting
point and by this, if found in underground rock deposits, they are usually in a
form of solid.