Answer:
ΔG° = -5.4 kJ/mol
ΔG = 873.2 J/mol = 0.873 kJ /mol
Explanation:
Step 1: Data given
ΔG (NO2) = 51.84 kJ/mol
ΔG (N2O4) = 98.28 kJ/mol
Step 2:
ΔG = ΔG° + RT ln Q
⇒with Q = the reaction quatient
⇒with T = the temperature = 298 K
⇒with R = 8.314 J / mol*K
⇒with ΔG° = ΔG° (N2O4) - 2*ΔG°(NO2
)
⇒ ΔG° = 98.28 kJ/mol - 2* 51.84 kJ/mol
⇒ ΔG° = -5.4 kJ/mol
Part B
ΔG = ΔG° =RT ln Q
⇒with G° = -5.4 kj/mol = -5400 j/mol
⇒
with R = 8.314 J/K*mol
⇒with T = 298 K
⇒with Q = p(N2O4)/ [ p(NO2) ]² = 1.63/0.36² = 12.577
ΔG = -5400 + 8.314 * 298 * ln(12.577)
ΔG = -5400 + 8.314 * 298 * 2.532
ΔG = 873.2 J/mol = 0.873 kJ/mol
<span>If I were a scientist examining the DNA sequence of two unknown organisms that I hypothesize share a common ancestor, I would expect to find similar or almost identical DNA sequence between the two organisms.
</span>
We first assume that this gas is an ideal gas where it follows the ideal gas equation. The said equation is expressed as: PV = nRT. From this equation, we can predict the changes in the pressure, volume and temperature. If the volume and the temperature of this gas is doubled, then the pressure still stays the same.
Answer:
11.0 L
Explanation:
The equation for this reaction is given as;
2H2 + O2 --> 2H2O
2 mol of H2 reacts with 1 mol of O2 to form 2 mol of H2O
At STP;
1 mol = 22.4 L
This means;
44.8 L of H2 reacts with 22.4 L of O2 to form 44.8 L of H2O
In this reaction, the limiting reactant is H2 as O2 is in excess.
The relationship between H2 and H2O;
44.8 L = 44.8 L
11.0 L would produce x
Solving for x;
x = 11 * 44.8 / 44.8
x = 11.0 L
Answer:
true
Explanation:
Heat travels from the hot cocoa in the cup to your hands. No energy is transferred. Heat is transferred from your hands to the hot cocoa in the cup.