Answer:
Mass of C₂H₄N₂ produced = 3.64 g
Explanation:
The balanced chemical equation for the reaction is given below:
3CH₄ (g) + 5CO₂ (g) + 8NH₃ (g) → 4C₂H₄N₂ (g) + 10H₂O (g)
From the equation, 3 moles of CH₄ reacts with 5 moles of CO₂ and 8 moles of NH₃ to produce 4 moles of C₂H₄N₂ and 10 moles of H₂O
Molar masses of the compounds are given below below:
CH₄ = 16 g/mol; CO₂ = 44 g/mol; NH3 = 17 g/mol; C₂H₄N₂ = 56 g/mol; H₂O g/mol
Comparing the mole ratios of the reacting masses;
CH₄ = 1.65/16 = 0.103
CO₂ = 13.5/44 = 0.307
NH₃ = 2.21/17 = 0.130
converting to whole number ratios by dividing with the smallest ratio
CH₄ = 0.103/0.103 = 1
CO₂ = 0.307/0.103 = 3
NH₃ = 0.130/0.103 = 1.3
Multiplying through with 5
CH₄ = 1 × 5 = 5
CO₂ = 3 × 5 = 15
NH₃ = 1.3 × 5 = 6.5
Therefore, the limiting reactant is NH₃
8 × 17 g (136 g) of NH₃ reacts to produce 4 × 56 g (224 g) of C₂H₄N₂
Therefore, 2.21 g of NH₃ will produce (2.21 × 224)/136 g of C₂H₄N₂ = 3.64 g of C₂H₄N₂
Mass of C₂H₄N₂ produced = 3.64 g
As the shaft inside the generator<span> turns, an </span>electric<span> current is produced in the wire. The </span>electric generator<span> is converting mechanical, moving energy into </span>electrical<span>energy.
-google search</span>
According to enstiens theory of relativity, c is constant in E=mc^2 c is the speed of light. and many other physicsts all calculate it to be the same amount, <span>299,792, 458 meters per second. </span>
<h3>
Answer: A) 3.5 mol/L</h3>
Explanation:
To determine the molarity, we have to find the number of moles in the volume given, and then extrapolate to find the number of moles that would be in 1 L.
<u>Determine the moles in the given volume</u>
moles of LiCl = mass ÷ molar mass
= 139.9 g ÷ 42.39 g/mol
= 3.30 mol
<u>Find the moles in 1 L</u>
Since 930 mL of LiCl = 3.30 mol
then 1000 mL of LiCl = (3.30 mol × 1000 mL/L) ÷ 930 mL
= 3.55 mol/L
<span>A chemical change has occurred creating a precipitate.
Just had that question on a quiz. XP
Hope I helped :)</span>