Answer:
This reaction is exothermic because the system shifted to the left on heating.
Explanation:
2NO₂ (g) ⇌ N₂O₄(g)
Reactant => NO₂ (dark brown in color)
Product => N₂O₄ (colorless)
From the question given above, we were told that when the reaction at equilibrium was moved from room temperature to a higher temperature, the mixture turned dark brown in color.
This simply means that the reaction does not like heat. Hence the reaction is exothermic reaction.
Also, we can see that when the temperature was increased, the reaction turned dark brown in color indicating that the increase in the temperature favors the backward reaction (i.e the equilibrium shift to the left) as NO₂ which is the reactant is dark brown in color. This again indicates that the reaction is exothermic because an increase in the temperature of an exothermic reaction will shift the equilibrium position to the left.
Therefore, we can conclude that:
The reaction is exothermic because the system shifted to the left on heating.
Answer: Combustion changes the potential chemical energy into kinetic energy in the form of heat. For combustion an organic wood combines with oxygen already in the air and undergoes a chemical reaction that gives off carbon dioxide,water,and energy in the form of heat and light.
The number of students is your independent variable
This idea has historical significance. The ancient Greek philosopher Democritus (born 460 BCE), who held that everything is composed of small particles moving in empty space, is credited with developing the first hypothesis we have about the microscopic universe. He had some concrete proof for this, such the fact that items like a new loaf of bread or a rose may give off a scent even when they are far from the source. Being a materialist, he thought that these odors originated from actual material particles released by the bread or the rose, rather than being purely a type of magic. He reasoned that these particles must float through the air, with some of them maybe landing in your nose where you can smell them immediately. This still makes sense in modern times. But many of us now have quite different perspectives on these "particles."
Thank you,
Eddie
<u>Answer:</u> The atomic symbol of the given element is 
<u>Explanation:</u>
The general isotopic representation of an element is given as: 
where,
Z represents the atomic number of the element
A represents the mass number of the element
X represents the symbol of an element
For the given isotope: 130-iodine
Mass number = 130
Atomic number = 53
Hence, the atomic symbol of the given element is 