Answer: 0.0000332mol
Explanation: 1mole of CCl4 contains 6.02x10^23 molecules.
Therefore, X mol of CCl4 will contain 2 x 10^19 molecules i.e
Xmol of CCl4 = 2 x 10^19/ 6.02x10^23 = 0.0000332mol
Answer:
Explanation:
We can calculate the volume of the oxygen molecule as the radius of oxygen molecule is given as 2×10⁻¹⁰m.
We know that volume=4/3×πr³
volume =4/3×π(2.0×10⁻¹⁰m)³
volume=33.40×10⁻³⁰m³
Volume of oxygen molecule=33.40×10⁻³⁰m³
we know the ideal gas equation as:
PV=nRT
k=R/Na
R=k×Na
PV=n×k×Na×T
n×Na=N
PV=Nkt
p is pressure of gas
v is volume of gas
T is temperature of gas
N is numbetr of molecules
Na is avagadros number
k is boltzmann constant =1.38×10⁻²³J/K
R is real gas constant
So to calculate pressure using the formula;
PV=NkT
P=NkT/V
Since there is only one molecule of oxygen so N=1
P=[1×1.38×10⁻²³J/K×300]/[33.40×10⁻³⁰m³
p=12.39×10⁷Pascal
Answer:
n = 7.86 mol
Explanation:
This question can be solved using the ideal gas law of PV = nRT.
Temperature must be in K, so we will convert 22.5C to 295 K ( Kelvin = C + 273).
R is the ideal gas constant of 0.0821.
(2.24atm)(85.0L) = n(0.0821)(295K)
Isolate n to get:
n = (2.24atm)(85.0L)/(0.0821)(295K)
n = 7.86 mol
The concentrations of a mixture at equilibrium are constant as a function of time because the <span>e forward reaction proceeds at the same rate as the reverse reaction.</span>