If F = Gm₁m₂/d², and we change m₁ to 5m₁ and m₂ to 2m₂, then the new magnitude of the gravitational force is
F' = G (5m₁) (2m₂) / d²
F' = 10 Gm₁m₂ / d²
but this is really just F' = 10F. So J is the correct choice.
Answer:
I think it's a because it goes thru it and reflects
Answer:
the field at the center of solenoid 2 is 12 times the field at the center of solenoid 1.
Explanation:
Recall that the field inside a solenoid of length L, N turns, and a circulating current I, is given by the formula:
Then, if we assign the subindex "1" to the quantities that define the magnetic field (
) inside solenoid 1, we have:

notice that there is no dependence on the diameter of the solenoid for this formula.
Now, if we write a similar formula for solenoid 2, given that it has :
1) half the length of solenoid 1 . Then 
2) twice as many turns as solenoid 1. Then 
3) three times the current of solenoid 1. Then 
we obtain:

Answer:
The new length is 50.00885m
Explanation:
linear thermal expansion coefficient Fe 11.8e-6 /K
The new length can be determined using the following equation:
∆L/L = α∆T, where α is linear thermal expansion coefficient
∆L = Lα∆T = 50(11.8e-6)(35-20) = 0.00885 m
New length = ( 50.000 + 0.00885)m =
New length = 50.00885 m
From all the options listed, as seen in the picture attached, the example which best represents the use of creativity in a scientific inquiry is option D. i.e. <span>developing a new way to extract a particular protein from tissue samples. Figuring out new methods and implementing them is what is called as creativity in scientific inquiry.</span>