1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
quester [9]
3 years ago
6

For what value(s) of the constant b does the equation f(x)=3x^2+bx+27 have 1 x-intercept

Mathematics
1 answer:
lions [1.4K]3 years ago
7 0

Step-by-step explanation:

An a quadratic equation,

{ax}^{2}  +  bx + c = 0

If the quadratic has one solution,

then

b {}^{2}  - 4ac = 0

So plug in 27 for c, and 3 for a

{b}^{2}  - 4(3)(27) = 0

{b}^{2}  - 324 = 0

{b}^{2}  = 324

b = 18

or

b =  - 18

So our answer is 18 or -18

You might be interested in
I need help pls!!!!!
belka [17]

Answer:

The sales price is 90% of the regular price.

The regular price is $60

10% of 60 is $6

8 0
3 years ago
Are the following proportional? Explain or show<br> your reasoning<br> 3/5 and 18/25
kykrilka [37]

Answer:

No, they are not proportional. 3/5 with equal out to 15/25 by using the method of Least Common Denominator!

Step-by-step explanation:

Hope this helps :)

7 0
3 years ago
ANWSER these three questions show ur work, if u can is somewhat optional
Airida [17]

Answer:

1. 35            2. 565.5         3. 12.28

Step-by-step explanation:

1. Triangle 1 & 2: 7x3=21    

You do not have to divide by 2 is since there are two triangles.

 Semi-circle: 14.13

2. Trinagle: 29x19/2 = 275.5

Rectangle: 29x10 = 290

3. Triangle: 3x4/2 = 6

Semi-circle: 3.14x4/2 = 6.28

<em>Took a long time- Please give Brainliest and points!</em>

7 0
3 years ago
Use this list of Basic Taylor Series and the identity sin2θ= 1 2 (1−cos(2θ)) to find the Taylor Series for f(x) = sin2(3x) based
notsponge [240]

Answer:

The Taylor series for sin^2(3 x) = - \sum_{n=1}^{\infty} \frac{-9^{n}2^{2n-1}x^{2n}}{(2n)!}, the first three non-zero terms are 9x^{2} -27x^{4}+\frac{162}{5}x^{6} and the interval of convergence is ( -\infty, \infty )

Step-by-step explanation:

<u>These are the steps to find the Taylor series for the function</u> sin^2(3 x)

  1. Use the trigonometric identity:

sin^{2}(x)=\frac{1}{2}*(1-cos(2x))\\ sin^{2}(3x)=\frac{1}{2}*(1-cos(2(3x)))\\ sin^{2}(3x)=\frac{1}{2}*(1-cos(6x))

   2. The Taylor series of cos(x)

cos(y) = \sum_{n=0}^{\infty}\frac{-1^{n}y^{2n}}{(2n)!}

Substituting y=6x we have:

cos(6x) = \sum_{n=0}^{\infty}\frac{-1^{n}6^{2n}x^{2n}}{(2n)!}

   3. Find the Taylor series for sin^2(3x)

sin^{2}(3x)=\frac{1}{2}*(1-cos(6x)) (1)

cos(6x) = \sum_{n=0}^{\infty}\frac{-1^{n}6^{2n}x^{2n}}{(2n)!} (2)

Substituting (2) in (1) we have:

\frac{1}{2} (1-\sum_{n=0}^{\infty}\frac{-1^{n}6^{2n}x^{2n}}{(2n)!})\\ \frac{1}{2}-\frac{1}{2} \sum_{n=0}^{\infty}\frac{-1^{n}6^{2n}x^{2n}}{(2n)!}

Bring the factor \frac{1}{2} inside the sum

\frac{6^{2n}}{2}=9^{n}2^{2n-1} \\ (-1^{n})(9^{n})=(-9^{n} )

\frac{1}{2}-\sum_{n=0}^{\infty}\frac{-9^{n}2^{2n-1}x^{2n}}{(2n)!}

Extract the term for n=0 from the sum:

\frac{1}{2}-\sum_{n=0}^{0}\frac{-9^{0}2^{2*0-1}x^{2*0}}{(2*0)!}-\sum_{n=1}^{\infty}\frac{-9^{n}2^{2n-1}x^{2n}}{(2n)!}\\ \frac{1}{2} -\frac{1}{2} -\sum_{n=1}^{\infty}\frac{-9^{n}2^{2n-1}x^{2n}}{(2n)!}\\ 0-\sum_{n=1}^{\infty}\frac{-9^{n}2^{2n-1}x^{2n}}{(2n)!}\\ sin^{2}(3x)=-\sum_{n=1}^{\infty}\frac{-9^{n}2^{2n-1}x^{2n}}{(2n)!}

<u>To find the first three non-zero terms you need to replace n=3 into the sum</u>

sin^{2}(3x)=\sum_{n=1}^{\infty}\frac{-9^{n}2^{2n-1}x^{2n}}{(2n)!}\\ \sum_{n=1}^{3}\frac{-9^{3}2^{2*3-1}x^{2*3}}{(2*3)!} = 9x^{2} -27x^{4}+\frac{162}{5}x^{6}

<u>To find the interval on which the series converges you need to use the Ratio Test that says</u>

For the power series centered at x=a

P(x)=C_{0}+C_{1}(x-a)+C_{2}(x-a)^{2}+...+ C_{n}(x-a)^{n}+...,

suppose that \lim_{n \to \infty} |\frac{C_{n}}{C_{n+1}}| = R.. Then

  • If R=\infty, the the series converges for all x
  • If 0 then the series converges for all |x-a|
  • If R=0, the the series converges only for x=a

So we need to evaluate this limit:

\lim_{n \to \infty} |\frac{\frac{-9^{n}2^{2n-1}x^{2n}}{(2n)!}}{\frac{-9^{n+1}2^{2*(n+1)-1}x^{2*(n+1)}}{(2*(2n+1))!}} |

Simplifying we have:

\lim_{n \to \infty} |-\frac{(n+1)(2n+1)}{18x^{2} } |

Next we need to evaluate the limit

\lim_{n \to \infty} |-\frac{(n+1)(2n+1)}{18x^{2} } |\\ \frac{1}{18x^{2} } \lim_{n \to \infty} |-(n+1)(2n+1)}|}

-(n+1)(2n+1) is negative when n -> ∞. Therefore |-(n+1)(2n+1)}|=2n^{2}+3n+1

You can use this infinity property \lim_{x \to \infty} (ax^{n}+...+bx+c) = \infty when a>0 and n is even. So

\lim_{n \to \infty} |-\frac{(n+1)(2n+1)}{18x^{2} } | \\ \frac{1}{18x^{2}} \lim_{n \to \infty} 2n^{2}+3n+1=\infty

Because this limit is ∞ the radius of converge is ∞ and the interval of converge is ( -\infty, \infty ).

6 0
3 years ago
Relatively Simple Math, pls lend a hand. 50 points and Brainliest
baherus [9]

B is the correct answer ,,,

4 0
2 years ago
Other questions:
  • At the farmers market, Nathaniel buys two dozen oranges at $3.50 per dozen, four kilograms of apples at $3.25 per kilogram, two
    5·1 answer
  • A toy company is releasing a new catapult for water balloons that launches them at 9.8 meters per second from a stand 0.6 meters
    14·1 answer
  • What are the roots of the equation x^2-3x+1=0
    8·1 answer
  • Calculate the slope between the two points: (7, –4), (7, 8)
    14·1 answer
  • 1. Write the following in exponential form and as a multiplication sentence using only 10 as a factor
    11·1 answer
  • 2) -88, 93, 4, 91, -15, 6
    6·1 answer
  • Someone please help asap!!! How do I know where to shade at?
    12·1 answer
  • A farm lets you pick 3 pints of raspberries for $12.00. What is the cost per pint? How many pints do you get per dollar? At this
    15·2 answers
  • Help pls I need help tyy!
    12·2 answers
  • Can someone please help me. please man just help me
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!