Answer:
it looks like dots and just black space on a large scale
Explanation:
on a large scale the universe especially our milky way looks small
hope this helps
In that case, there are three possible scenarios:
-- If the braking force is less than the force delivered by the engine,
then the car will continue to accelerate, and the brakes will eventually
overheat and erupt in flame.
-- If the braking force is exactly equal to the force delivered by the engine,
then the car will continue moving at a constant speed, and the brakes will
eventually overheat and erupt in flame.
-- If the braking force is greater than the force delivered by the engine,
then the car will slow down and eventually stop. If it stops soon enough,
then the absorption of kinetic energy by the brakes will end before the
brakes overheat and erupt in flame. Even if the engine is still delivering
force, the brakes can be kept locked in order to keep the car stopped ...
They do not absorb and dissipate any energy when the car is motionless.
Explanation:
Solids have a definite shape and definite volume.
Answer:
![F_T=6k\frac{Q^2}{L}\hat{i}+10k\frac{Q^2}{L}\hat{j}=2k\frac{Q^2}{L}[3\hat{i}+5\hat{j}]](https://tex.z-dn.net/?f=F_T%3D6k%5Cfrac%7BQ%5E2%7D%7BL%7D%5Chat%7Bi%7D%2B10k%5Cfrac%7BQ%5E2%7D%7BL%7D%5Chat%7Bj%7D%3D2k%5Cfrac%7BQ%5E2%7D%7BL%7D%5B3%5Chat%7Bi%7D%2B5%5Chat%7Bj%7D%5D)


Explanation:
I attached an image below with the scheme of the system:
The total force on the charge 2Q is the sum of the contribution of the forces between 2Q and the other charges:
![F_T=F_Q+F_{3Q}+F_{4Q}\\\\F_T=k\frac{(Q)(2Q)}{R_1}\hat{i}+k\frac{(3Q)(2Q)}{R_2}\hat{j}+k\frac{(4Q)(2Q)}{R_3}[cos\theta \hat{i}+sin\theta \hat{j}]](https://tex.z-dn.net/?f=F_T%3DF_Q%2BF_%7B3Q%7D%2BF_%7B4Q%7D%5C%5C%5C%5CF_T%3Dk%5Cfrac%7B%28Q%29%282Q%29%7D%7BR_1%7D%5Chat%7Bi%7D%2Bk%5Cfrac%7B%283Q%29%282Q%29%7D%7BR_2%7D%5Chat%7Bj%7D%2Bk%5Cfrac%7B%284Q%29%282Q%29%7D%7BR_3%7D%5Bcos%5Ctheta%20%5Chat%7Bi%7D%2Bsin%5Ctheta%20%5Chat%7Bj%7D%5D)
the distances R1, R2 and R3, for a square arrangement is:
R1 = L
R2 = L
R3 = (√2)L
θ = 45°
![F_T=k\frac{2Q^2}{L}\hat{i}+k\frac{6Q^2}{L}\hat{j}+k\frac{8Q^2}{\sqrt{2}L}[cos(45\°)\hat{i}+sin(45\°)\hat{j}]\\\\F_T=k\frac{2Q^2}{L}\hat{i}+k\frac{6Q^2}{L}\hat{j}+k\frac{8Q^2}{\sqrt{2}L}[\frac{\sqrt{2}}{2}\hat{i}+\frac{\sqrt{2}}{2}\hat{j}]\\\\F_T=6k\frac{Q^2}{L}\hat{i}+10k\frac{Q^2}{L}\hat{j}=2k\frac{Q^2}{L}[3\hat{i}+5\hat{j}]](https://tex.z-dn.net/?f=F_T%3Dk%5Cfrac%7B2Q%5E2%7D%7BL%7D%5Chat%7Bi%7D%2Bk%5Cfrac%7B6Q%5E2%7D%7BL%7D%5Chat%7Bj%7D%2Bk%5Cfrac%7B8Q%5E2%7D%7B%5Csqrt%7B2%7DL%7D%5Bcos%2845%5C%C2%B0%29%5Chat%7Bi%7D%2Bsin%2845%5C%C2%B0%29%5Chat%7Bj%7D%5D%5C%5C%5C%5CF_T%3Dk%5Cfrac%7B2Q%5E2%7D%7BL%7D%5Chat%7Bi%7D%2Bk%5Cfrac%7B6Q%5E2%7D%7BL%7D%5Chat%7Bj%7D%2Bk%5Cfrac%7B8Q%5E2%7D%7B%5Csqrt%7B2%7DL%7D%5B%5Cfrac%7B%5Csqrt%7B2%7D%7D%7B2%7D%5Chat%7Bi%7D%2B%5Cfrac%7B%5Csqrt%7B2%7D%7D%7B2%7D%5Chat%7Bj%7D%5D%5C%5C%5C%5CF_T%3D6k%5Cfrac%7BQ%5E2%7D%7BL%7D%5Chat%7Bi%7D%2B10k%5Cfrac%7BQ%5E2%7D%7BL%7D%5Chat%7Bj%7D%3D2k%5Cfrac%7BQ%5E2%7D%7BL%7D%5B3%5Chat%7Bi%7D%2B5%5Chat%7Bj%7D%5D)
and the magnitude is:

the direction is:
