Answer:
We could do two 1:50 dilutions and one 1:4 dilutions.
Explanation:
Hi there!
A solution that is 1000 ug/ ml (or 1000 mg / l) is 1000 ppm.
Knowing that 1 ppm = 1000 ppb, 100 ppb is 0.1 ppm.
Then, we have to dilute the stock solution (1000 ppm / 0.1 ppm) 10000 times.
We could do two 1:50 dilutions and one 1:4 dilutions (50 · 50 · 4 = 10000). Since the first dilution is 1:50, you will use the smallest quantity of the stock solution (if we use the 10.00 ml flask):
First step (1:50 dilution):
Take 0.2 ml of the stock solution using the third dispenser (20 - 200 ul), and pour it in the 10.00 ml flask. Fill with water to the mark (concentration : 1000 ppm / 50 = 20 ppm).
Step 2 (1:50 dilution):
Take 0.2 ml of the solution made in step 1 and pour it in another 10.00 ml flask. Fill with water to the mark. Concentration 20 ppm/ 50 = 0.4 ppm)
Step 3 (1:4 dilution):
Take 2.5 ml of the solution made in step 3 (using the first dispenser 1 - 5 ml) and pour it in a 10.00 ml flask. Fill with water to the mark. Concentration 0.4 ppm / 4 = 0.1 ppm = 100 ppb.
The correct answer is greenhouse gases. It is the most abundant gases among the choices in the atmosphere. These gases are water vapor, methane, nitrous oxide, ozone and carbon dioxide. Without these gases, the temperature of Earth will be about -18 degrees Celsius.
Hey there!:
Molar mass:
CHCl3 = ( 12.01 * 1 )+ (1.008 * 1 ) + ( 35.45 * 3 ) => 119.37 g/mol
C% = ( atomic mass C / molar mass CHCl3 ) * 100
For C :
C % = (12.01 / 119.37 ) * 100
C% = ( 0.1006 * 100 )
C% = 10.06 %
For H :
H% = ( atomic mass H / molar mass CHCl3 ) * 100
H% = ( 1.008 / 119.37 ) * 100
H% = 0.008444 * 100
H% = 0.8444 %
For Cl :
Cl % ( molar mass Cl3 / molar mass CHCl3 ):
Cl% = ( 3 * 35.45 / 119.37 ) * 100
Cl% = ( 106.35 / 119.37 ) * 100
Cl% = 0.8909 * 100
Cl% = 89.9%
Hope that helps!
OK in the case of hydrazine 14 grams of nitrogen combine with 2 gram of hydrogen and with ammonia 14 grams combine with 3 grams of hydrogen.
Ratio 2:3