It is crucial to match your units of Pressure, Volume, number of mole, and Temperature with the units of R. If you use the first value of R, which is 0.082057 L atm mol-1K-1, your unit for pressure must be atm, for volume must be liter, for temperature must be Kelvin.
<span>We can use the heat
equation,
Q = mcΔT </span>
<span>
Where Q is the amount of energy transferred (J), m is
the mass of the substance (kg), c is the specific heat (J g</span>⁻¹ °C⁻<span>¹) and ΔT is the temperature
difference (°C).</span>
According to the given data,
Q = 300 J
m = 267 g
<span>
c = ?
ΔT = 12 °C</span>
By applying the
formula,
<span>300 J = 267 g x c x
12 °C
c = 0.0936 J g</span>⁻¹ °C⁻<span>¹
Hence, specific heat of the given substance is </span>0.0936 J g⁻¹ °C⁻¹.
When energy transforms into mass, the amount of energy does not remain the same. When mass transforms into energy, the amount of energy also does not remain the same. However, the amount of matter and energy remains the same. ... You would weigh much less on the Moon because it is only about one-sixth the mass of Earth. So the answer is D
Answer:
A mushroom is a heterotroph.
Explanation:
Mushrooms are fungi, which are heterotrophs because they depend on other organisms for their food.
Answer:
2py and 2pz orbitals
Explanation:
Each carbon atom still has two half-filled 2py and 2pz orbitals, which are perpendicular both to each other and to the line formed by the sigma bonds. These two perpendicular pairs of p orbitals form two pi bonds between the carbons, resulting in a triple bond overall (one sigma bond plus two pi bonds).