Answer is: molarity of hydrofluoric solution is 0.09 M.
Chemical reaction: HF(aq) + KOH(aq) → KF(aq) + H₂O(l).
V(HF) = 30.0 mL.
c(KOH) = 0.122 M.
V(KOH) = 22.15 mL:
c(HF) = ?.
From chemical reaction: n(HF) : n(KOH) = 1 : 1.
n(HF) = n(KOH).
c(HF) · V(HF) = c(KOH) · V(KOH).
c(HF) = c(KOH) · V(KOH) ÷ V(HF).
c(HF) = 0.122 M · 22.15 mL ÷ 30 mL:
c(HF) = 0.09 M.
Answer:
Energy levels
Explanation:
Elements in one row of the periodic table have the same energy levels. A row on the periodic table is the horizontal arrangement of elements. These rows are called periods.
There are 7 periods on the periodic table.
- Each elements on a period begins with an atom having one valence electrons and then ending with completely filled orbitals.
- Elements in the same period are known to have the same electronic shells which is the energy level.
- The principal quantum number of their electrons is the same.
Explanation:
Put the pan into a water-containing dish and mix well. Now use a strainer to transfer the solution into another jar. The salt should disappear in it.
And using a tube with a filtrate, transfer the salts that has sand into another bottle with a filtrate. Therefore the sand is split. Eventually, when all the water vaporizes and the salt stays in the bottle, leave the extra solvent and heat it.
Answer:
The majority of chemical processes are reactions that occur in solution. Important industrial processes often utilize solution chemistry. "Life" is the sum of a series of complex processes occurring in solution. Air, tap water, tincture of iodine, beverages, and household ammonia are common examples of solutions.
four types of solution:
Turpentine as a solvent are used in the production of paints, inks and dyes. ↔Water as a solvent is used in the making of food, textiles, soaps and detergents. ↔Alloys are solid solutions that are used in the manufacture of cars, aerospace and other vehicles.
Explanation:
can you pls make me brainliest
Answer:
When the concentration of F- exceeds 0.0109 M, BaF2 will precipitate.
Explanation:
Ba²⁺(aq) + 2 F⁻(aq) <----> BaF₂(s)
When BaF₂ precipitates, the Ksp relation is given by
Ksp = [Ba²⁺] [F⁻]²
[Ba²⁺] = 0.0144 M
[F⁻] = ?
Ksp = (1.7 × 10⁻⁶)
1.7 × 10⁻⁶ = (0.0144) [F⁻]²
[F⁻]² = (1.7 × 10⁻⁶)/0.0144 = 0.0001180555
[F⁻] = √0.0001180555 = 0.01086 M = 0.0109 M
Hope this Helps!!!