Answer: 10.2 grams
Explanation:
The balanced chemical reaction is :

According to the ideal gas equation:

P = Pressure of the gas = 740 torr = 0.97 atm (760torr=1atm)
V= Volume of the gas = 12.0 L
T= Temperature of the gas = 19°C = 292 K 
R= Gas constant = 0.0821 atmL/K mol
n= moles of gas


According to stoichiometry:
2 moles of hydrogen are generated by = 1 mole of 
Thus 0.48 moles of hydrogen are generated by =
moles of 
Mass of 
Thus 10.2 grams of
are needed to generate 12.0 L of hydrogen gas if the pressure of hydrogen is 740. torr at 19°C
<h3>CHEMISTRY</h3>
What is the most basic aromatic amine’s common name?
a) Benzenamine
b) Benzylamine
c) Aniline
d) Aminobenzene
#BRAINLYEVERYDAY
When water at 50 C is added to ice at -12 C, heat is transferred from hot water to ice.
- Heat given out by water = Heat absorbed by ice
Calculating the heat released by hot water:
ΔT

Calculating heat absorbed by 16 g of ice: Ice at
is converted to ice at
and then ice at
to water at 
ΔT + 
+ 
q = 405.12 J +5336.8 J =5741.92 J
- Heat given out by water = Heat absorbed by ice
-(
m = 27.4 g
Therefore, 27.4 g water at
must be added to 16 g of ice at
to convert to liquid water at 
<span>it is located directly under the sima</span>