Answer:
H2SO4 + 8HI → H2S + 4I2 + 4H2O
The average mass of an atom is calculated with the formula:
average mass = abundance of isotope (1) × mass of isotope (1) + abundance of isotope (2) × mass of isotope (2) + ... an so on
For the boron we have two isotopes, so the formula will become:
average mass of boron = abundance of isotope (1) × mass of isotope (1) + abundance of isotope (2) × mass of isotope (2)
We plug in the values:
10.81 = 0.1980 × 10.012938 + 0.8020 × mass of isotope (2)
10.81 = 1.98 + 0.8020 × mass of isotope (2)
10.81 - 1.98 = 0.8020 × mass of isotope (2)
8.83 = 0.8020 × mass of isotope (2)
mass of isotope (2) = 8.83 / 0.8020
mass of isotope (2) = 11.009975
mass of isotope (1) = 10.012938 (given by the question)
where is the diagram?
without the diagram i can't help
Answer:
A, C and D are correct.
Explanation:
Hello.
In this case, since the relationship between the vapor pressure of a solution is directly proportional to the mole fraction of the solvent and the vapor pressure of the pure solvent as stated by the Raoult's law:

Since the solute is not volatile, the mole fraction of the solute is not taken into account for vapor pressure of the solution, therefore A is correct whereas B is incorrect.
Moreover, since the higher the vapor pressure, the weaker the intermolecular forces due to the fact that less more molecules are like to change from liquid to vapor and therefore more energy is required for such change, we can evidence that both C and D are correct.
Best regards.
44. (a) N2O3 (b) SF4 (c) AlCl3 (d) Li2CO3
46. H Br
δ+ δ−
48. The metallic potassium atoms lose one electron and form +1 cations,
and the nonmetallic fluorine atoms gain one electron and form –1 anions.
K → K+
+ e–
19p/19e–
19p/18e–
F + e–
→ F–
9p/9e–
9p/10e–
The ionic bonds are the attractions between K+
cations and F–
anions.
50. See Figure 3.6.
52. (a) covalent…nonmetal-nonmetal (b) ionic…metal-nonmetal
54. (a) all nonmetallic atoms - molecular (b) metal-nonmetal - ionic
56. (a) 7 (b) 4
58. Each of the following answers is based on the assumption that nonmetallic
atoms tend to form covalent bonds in order to get an octet (8) of
electrons around each atom, like the very stable noble gases (other than
helium). Covalent bonds (represented by lines in Lewis structures) and lone
pairs each contribute two electrons to the octet.
(a) oxygen, O
If oxygen atoms form two covalent bonds, they will have an octet of electrons
around them. Water is an example:
H O H
(b) fluorine, F
If fluorine atoms form one covalent bond, they will have an octet of electrons
around them. Hydrogen fluoride, HF, is an example:
H F
(c) carbon, C
If carbon atoms form four covalent bonds, they will have an octet of electrons
around them. Methane, CH4, is an example:
H H
H
H
C
(d) phosphorus, P
If phosphorus atoms form three covalent bonds, they will have an octet