The freezing point depression is a colligative property which means that it is proportional to the number of particles dissolved.
The number of particles dissolved depends on the dissociation constant of the solutes, when theyt are ionic substances.
If you have equal concentrations of two solutions on of which is of a ionic compound and the other not, then the ionic soluton will contain more particles (ions) and so its freezing point will decrease more (will be lower at end).
In this way you can compare the freezing points of solutions of KCl, Ch3OH, Ba(OH)2, and CH3COOH, which have the same concentration.
As I explained the solution that produces more ions will exhibit the greates depression of the freezing point, leading to the lowest freezing point.
In this case, Ba(OH)2 will produce 3 iones, while KCl will produce 2, CH3OH will not dissociate into ions, and CH3COOH will have a low dissociation constant.
Answer: Then, you can predict that Ba(OH)2 solution has the lowest freezing point.
Answer:
- Empirical:

- Molecular:

Explanation:
Hello,
In this case, based on the information regarding the combustion, the moles of carbon turn out:

Moreover, the moles of hydrogen:

Thus, the subscripts of carbon and hydrogen in the hydrocarbon turn out:

Now, looking for a suitable whole number we obtain the following empirical formula as 2.335 times 3 is 7 for hydrogen:

In such a way, that compound has a molar mass of 43 g/mol, thus, the whole compound's molar mass is 86.18 g/mol for which the molecular formula is twice the empirical one, therefore:

Which is hexane.
Best regards.
It's simple.
the number of protons in an atom never changes. And also, the no of protons is its atomic number.if you look up the periodic table, you will find a number on the top - left corner of each of the boxes. This is the atomic number.No 2 same elements on the periodic table have the same atomic number. So, all you have to do is search for a box that has the number 13 on it.
and by the way ... the element which you're searching for is Aluminium
Sorry, haven't came across that as of yet.