We are given
0.2 M HCHO2 which is formic acid, a weak acid
and
0.15 M NaCHO2 which is a salt which can be formed by reacting HCHO2 and NaOH
The mixture of the two results to a basic buffer solution
To get the pH of a base buffer, we use the formula
pH = 14 - pOH = 14 - (pKa - log [salt]/[base])
We need the pKa of HCO2
From, literature, pKa = 1.77 x 10^-4
Substituting into the equation
pH = 14 - (1.77 x 10^-4 - log 0.15/0.2)
pH = 13.87
So, the pH of the buffer solution is 13.87
A pH of greater than 7 indicates that the solution is basic and a pH close to 14 indicates high alkalinity. This is due to the buffering effect of the salt on the base.
Answer: small, whole-number ratio
Explanation: 1) A compound consists of atoms of two or more elements combined in a small, whole-number ratio. In a given compound, the numbers of atoms of each of its elements are always present in the same ratio
You need the set of reactions that goes from ammonia to nitric acid.
<span>
1) 4NH3(g)+5O2(g)-->4NO(g)+6H2O(g)
2) 2NO(g)+O2(g)-->2NO2(g)
3) 3NO2(g)+H2O(l)-->2HNO3(aq)+NO(g)
State the ratio of moles of HNO3 to NH3:
4 moles of NH3 produce 4 mole of NO,
4 moles of NO produce 4 moles of NO2
4 moles of NO2 produce 4 * (2 / 3) moles of HNO3 = 8/3 moles of HNO3.
=> (8/3) moles HNO3 : 4 moles NH3
Calculate the number of moles of HNO3 in 900.00 l of 0.140 M solution
M = n / V => n = M * V = 0.140 M * 900.00 liter = 126 moles HNO3
Use proportions:
(</span><span>8/3) moles HNO3 / 4 moles NH3 = 126 moles HNO3 / x
=> x = 126 moles HNO3 * 4 moles NH3 / (8/3 moles HNO3) = 189 moles NH3
Convert moles to grams:
molar mass NH3 = 14 g/mol + 3 * 1g/mol = 17 g/mol
mass in grams = number of moles * molar mass = 189 moles * 17 g/mol = 3213 g
Answer: 3213 g.
</span>
by making sure they are in the lowest ratio. by adding them to see if they total 100. by checking that they are whole-number multiples. by dividing them by the molar mass.