Answer:
e= 50 J/kg
Explanation:
Given that
Speed ,v= 10 m/s
Diameter of the turbine = 90 m
Density of the air ,ρ = 1.25 kg/m³
We know that mechanical energy given as

That is why mechanical energy per unit mass will be

Now by putting the values in the above equation we get

e= 50 J/kg
That why the mechanical energy unit mass will be 50 J/kg.
The answer mostly likely is: “1” due to the fact it is well ordered, and follows a similar thought process, best of luck!
1) 
2) 8.418
Explanation:
1)
The two components of the velocity field in x and y for the field in this problem are:


The x-component and y-component of the acceleration field can be found using the following equations:


The derivatives in this problem are:






Substituting, we find:

And

2)
In this part of the problem, we want to find the acceleration at the point
(x,y) = (-1,5)
So we have
x = -1
y = 5
First of all, we substitute these values of x and y into the expression for the components of the acceleration field:

And so we find:

And finally, we find the magnitude of the acceleration simply by applying Pythagorean's theorem:

Answer:
0.124
Explanation:
We calculate the hydraulic gradient by the formulas below.
I = (change in h)/(change in l)-----eqn 1
I = (hk-hl)/change in L ----- equation 2
At k the headloss = hk,
At L the headloss = hL
The distance of water travel is change in I
Total head at k
hk = 543+23
= 566 ft
Total head at L
hL = 461+74
= 535 ft
Change in L = 250
When we substitute these values in equation 2
566-535/250
= 0.124
The hydraulic gradient is 0.124