Answer:
Considering the guidelines of this exercise.
The pieces produced per month are 504 000
The productivity ratio is 75%
Explanation:
To understand this answer we need to analyze the problem. First of all, we can only produce 2 batches of production by the press because we require 3 hours to set it up. So if we rest those 6 hours from the 8 of the shift we get 6, leaving 2 for an incomplete bath. So multiplying 2 batches per day of production by press we obtain 40 batches per day. So, considering we work in this factory for 21 days per month well that makes 40 x 21 making 840 then we multiply the batches for the pieces 840 x 600 obtaining 504000 pieces produced per month. To obtain the productivity ratio we need to divide the standard labor hours meaning 6 by the amount of time worked meaning 8. Obtaining 75% efficiency.
Answer:
it has 15 horsepower to 300 horsepower and it weighs 2,906 to 3,131
Explanation:
its torque is 142 to 180
it has a inline 4 engine
there's a SE-R which has a turbo
Answer:
A worn inner CV joint often makes a clunking noise during starts and stops.
Answer:
The break force that must be applied to hold the plane stationary is 12597.4 N
Explanation:
p₁ = p₂, T₁ = T₂
The heat supplied = × Heating value of jet fuel
The heat supplied = 0.5 kg/s × 42,700 kJ/kg = 21,350 kJ/s
The heat supplied = ·
= 20 kg/s
The heat supplied = 20* = 21,350 kJ/s
= 1.15 kJ/kg
T₃ = 21,350/(1.15*20) + 485.03 = 1413.3 K
p₂ = p₁ × p₂/p₁ = 95×9 = 855 kPa
p₃ = p₂ = 855 kPa
T₃ - T₄ = T₂ - T₁ = 485.03 - 280.15 = 204.88 K
T₄ = 1413.3 - 204.88 = 1208.42 K
T₅ = 1208.42*(2/2.333) = 1035.94 K
= √(1.333*287.3*1035.94) = 629.87 m/s
The total thrust = × = 20*629.87 = 12597.4 N
Therefore;
The break force that must be applied to hold the plane stationary = 12597.4 N.