The pressure difference across the sensor housing will be "95 kPa".
According to the question, the values are:
Altitude,
Speed,
Pressure,
The temperature will be:
→ ![T = 15.04-[0.00649(9874)]](https://tex.z-dn.net/?f=T%20%3D%2015.04-%5B0.00649%289874%29%5D)
→ 
→ 
now,
→ ![P_o = 101.29[\frac{(-49.042+273.1)}{288.08} ]^{(5.256)}](https://tex.z-dn.net/?f=P_o%20%3D%20101.29%5B%5Cfrac%7B%28-49.042%2B273.1%29%7D%7B288.08%7D%20%5D%5E%7B%285.256%29%7D)
→
hence,
→ The pressure differential will be:
= 
= 
Thus the above solution is correct.
Learn more about pressure difference here:
brainly.com/question/15732832
Answer:
What do you need help with?
Explanation:
Answer:
(a) E = 0 N/C
(b) E = 0 N/C
(c) E = 7.78 x10^5 N/C
Explanation:
We are given a hollow sphere with following parameters:
Q = total charge on its surface = 23.6 μC = 23.6 x 10^-6 C
R = radius of sphere = 26.1 cm = 0.261 m
Permittivity of free space = ε0 = 8.85419 X 10−12 C²/Nm²
The formula for the electric field intensity is:
E = (1/4πεo)(Q/r²)
where, r = the distance from center of sphere where the intensity is to be found.
(a)
At the center of the sphere r = 0. Also, there is no charge inside the sphere to produce an electric field. Thus the electric field at center is zero.
<u>E = 0 N/C</u>
(b)
Since, the distance R/2 from center lies inside the sphere. Therefore, the intensity at that point will be zero, due to absence of charge inside the sphere (q = 0 C).
<u>E = 0 N/C</u>
(c)
Since, the distance of 52.2 cm is outside the circle. So, now we use the formula to calculate the Electric Field:
E = (1/4πεo)[(23.6 x 10^-6 C)/(0.522m)²]
<u>E = 7.78 x10^5 N/C</u>
Answer:
Mechanical Efficiency = 83.51%
Explanation:
Given Data:
Pressure difference = ΔP=1.2 Psi
Flow rate = 
Power of Pump = 3 hp
Required:
Mechanical Efficiency
Solution:
We will first bring the change the units of given data into SI units.

Now we will find the change in energy.
Since it is mentioned in the statement that change in elevation (potential energy) and change in velocity (Kinetic Energy) are negligible.
Thus change in energy is

As we know that Mass = Volume x density
substituting the value
Energy = Volume * density x ΔP / density
Change in energy = Volumetric flow x ΔP
Change in energy = 0.226 x 8.274 = 1.869 KW
Now mechanical efficiency = change in energy / work done by shaft
Efficiency = 1.869 / 2.238
Efficiency = 0.8351 = 83.51%