Answer:
See explanation
Explanation:
Given:
Initial pressure,
p
1
=
15
psia
Initial temperature,
T
1
=
80
∘
F
Final temperature,
T
2
=
200
∘
F
Find the gas constant and specific heat for carbon dioxide from the Properties Table of Ideal Gases.
R
=
0.04513
Btu/lbm.R
C
v
=
0.158
Btu/lbm.R
Find the work done during the isobaric process.
w
1
−
2
=
p
(
v
2
−
v
1
)
=
R
(
T
2
−
T
1
)
=
0.04513
(
200
−
80
)
w
1
−
2
=
5.4156
Btu/lbm
Find the change in internal energy during process.
Δ
u
1
−
2
=
C
v
(
T
2
−
T
1
)
=
0.158
(
200
−
80
)
=
18.96
Btu/lbm
Find the heat transfer during the process using the first law of thermodynamics.
q
1
−
2
=
w
1
−
2
+
Δ
u
1
−
2
=
5.4156
+
18.96
q
1
−
2
=
24.38
Btu/lbm
Answer:
The MATLAB Code for this PI Controller will be:
Kp = 350;
Ki = 300;
Kd = 50;
C = pid(Kp,Ki,Kd)
T = feedback(C*P,1);
t = 0:0.01:2;
step(T,t)
Explanation:
When you are designing a PID controller for a given system, follow the steps shown below to obtain a desired response.
Obtain an open-loop response and determine what needs to be improved
Add a proportional control to improve the rise time
Add a derivative control to reduce the overshoot
Add an integral control to reduce the steady-state error
Adjust each of the gains $K_p$, $K_i$, and $K_d$ until you obtain a desired overall response.
The further explanation is attached in the Word File.
Technician B is correct because torque is a force of an object.
Answer:
The tax on this property is
dollars
Explanation:
Given
Tax on per $100 is $2.50
Tax on every $1 is
dollars
Tax on property of value $150,000 is
dollars
The tax on this property is
dollars
I need more details to your question