Sorry, I don't know but I think the correct answer is the first option.
Communicating the findings is part of a scientific investigation! The last option
The time taken by the stone to hit the ground would be 5.12 seconds.
<h3>What are the three equations of motion?</h3>
There are three equations of motion given by Newton
The first equation is given as follows
v = u + at
the second equation is given as follows
S = ut + 1/2×a×t²
the third equation is given as follows
v² - u² = 2×a×s
Keep in mind that these calculations only apply to uniform acceleration.
As given in the problem, a stone is dropped from the helicopter which is ascending at the speed of 19.6 m/s
height(S) = 156.8 meters
initial velocity(u) = -19.6 m/s
acceleration(a) = 9.81 m/s²
By using the second equation of motion given by newton
S = ut + 1/2at²
S = 156.8m ,u= -19.6 m/s , a= 9.81 m/s² and t =? seconds
156.8= -19.6t + 9.81t²
t = 5.12 seconds
Thus, the time taken by the stone to hit the ground would be 5.12 seconds.
Learn more about equations of motion from here,
brainly.com/question/5955789
#SPJ1
One charge is enough in order to have an electric field.
In fact, every charge generates an electric field: for example, the electric field generated by a single point positive charge is radial, as shown in the attached figure. More complicate electric field configurations can be obtained adding charges or using more complicate charge distributions, but one charge is enough to have an electric field.
Answer:
Ventricular systole
Explanation:
This contraction causes an increase in pressure inside the ventricles, being the highest during the entire cardiac cycle. The ejection of blood contained in them takes place. Therefore, blood is prevented from returning to the atria by increasing pressure, which closes the bicuspid and tricuspid valves.