Swimmer and Divers. The Potential energy is transferred into Kinetic energy, and allows the diver to submerge into the water. The Kinetic energy then allows the diver to submerge and dive into the water. Potential energy however, is needed to allow the diver to get back out of the water after diving to get up and go and dive again, and then the Kinetic energy is transferred back to Potential energy to repeat the process.
Hope :) -Emilie Xo this is right and it helps! Xo
Answer:
2.464 cm above the water surface
Explanation:
Recall that for the cube to float, means that the volume of water displaced weights the same as the weight of the block.
We calculate the weight of the block multiplying its density (0.78 gr/cm^3) times its volume (11.2^3 cm^3):
weight of the block = 0.78 * 11.2^3 gr
Now the displaced water will have a volume equal to the base of the cube (11.2 cm^2) times the part of the cube (x) that is under water. Recall as well that the density of water is 1 gr/cm^3.
So the weight of the volume of water displaced is:
weight of water = 1 * 11.2^2 * x
we make both weight expressions equal each other for the floating requirement:
0.78 * 11.2^3 = 11.2^2 * x
then x = 0.78 * 11.2 cm = 8.736 cm
This "x" is the portion of the cube under water. Then to estimate what is left of the cube above water, we subtract it from the cube's height (11.2 cm) as follows:
11.2 cm - 8.736 cm = 2.464 cm
Explanation:
When one coulomb charge passes through any cross section of the wire per second,the current passing is one ampere. Charge of electron ,e=1.6X10^-19C. n=1/(1.6X10^-19)=6.25X10^18.Sep 17, 2017
Answer:
The K.E is maximum when the child is at the vertical position and the P.E is maximum at the extreme deviated position from the vertical.
Explanation:
- A child is swinging on swing up and down has both kinetic and potential energy.
- The total mechanical energy of the system is conserved throughout the system. At any instant the total mechanical energy is given by,
E = K.E + P.E
- The K.E is maximum when the child is at the vertical position.
- The P.E is maximum at the extreme deviated position from the vertical.
- And when K.E is maximum P.E becomes minimum and vice versa as per the law of conservation of energy.
Answer:
a. 11 m/s at 76° with respect to the original direction of the lighter car.
Explanation:
In this exercise, since both cars make a right angle, let's assume that the lighter car only has a horizontal velocity component (vx) and that the heavier one only has a vertical velocity component (vy). The final velocities for both components for the system can be determined as:

Assume that the lighter car has a 1kg mass and that the heavier car has a 4 kg mass.

The magnitude of the final velocity of the wreck can be found as:
![v_{f}^{2}= v_{fx}^{2}+ v_{fy}^{2}\\v_{f}=\sqrt[]{2.6^{2} + 10.4^{2}} \\v_{f}= 10.72](https://tex.z-dn.net/?f=v_%7Bf%7D%5E%7B2%7D%3D%20v_%7Bfx%7D%5E%7B2%7D%2B%20v_%7Bfy%7D%5E%7B2%7D%5C%5Cv_%7Bf%7D%3D%5Csqrt%5B%5D%7B2.6%5E%7B2%7D%20%2B%2010.4%5E%7B2%7D%7D%20%5C%5Cv_%7Bf%7D%3D%2010.72)
The final velocity has an intensity of roughly 11 m/s
As for the angle, it can be determined in respect to the lighter car (x axis) as follows:

Therefore, the wreck has a velocity with an intensity of 11 m/s at 76° with respect to the original direction of the lighter car.