A) We differentiate the expression for velocity to obtain an expression for acceleration:
v(t) = 1 - sin(2πt)
dv/dt = -2πcos(2πt)
a = -2πcos(2πt)
b) Any value of t can be plugged in as long as it is greater than or equal to 0.
c) we integrate the expression of velocity to find an expression for displacement:
∫v(t) dt = ∫ 1 - sin(2πt) dt
x(t) = t + cos(2πt)/2π + c
x(0) = 0
0 = = + cos(0)/2π + c
c = -1/2π
x(t) = t + cos(2πt)/2π -1/2π
Answer:
A is the answer .(A) is correct
Use a scale and record the weight in cm^3
It’s the crest, the crest is the top part of the wave and the trough is the bottom so they correspond
Answer:
the density of mobile electrons in the material is 3.4716 × 10²⁵ m⁻³
Explanation:
Given the data in the question;
we make use of the following expression;
hall Voltage VH = IB / ned
where I = 2.25 A
B = 0.685 T
d = 0.107 mm = 0.107 × 10⁻³ m
e = 1.602×10⁻¹⁹ C
VH = 2.59 mV = 2.59 × 10⁻³ volt
n is the electron density
so from the form; VH = IB / ned
VHned = IB
n = IB / VHed
so we substitute
n = (2.25 × 0.685) / ( 2.59 × 10⁻³ × 1.602×10⁻¹⁹ × 0.107 × 10⁻³ )
n = 1.54125 / 4.4396226 × 10⁻²⁶
n = 3.4716 × 10²⁵ m⁻³
Therefore, the density of mobile electrons in the material is 3.4716 × 10²⁵ m⁻³