You would be able to tell because a compound has two or more different atoms bonded together. The element only has 1 type of atom. and the mixture has two or more different atoms together but not joined!!
Answer: The -ite suffix is used on the oxyanion with one oxygen atom fewer (like sulfite SO32- or nitrite NO2-).
1.95 or 2 is the molarity of a 45.3g sample of KNO3 (101g) dissolved in enough water to make a 0.225L solution.
The correct answer is option b
Explanation:
Data given:
mass of KN
= 45.3 grams
volume = 0.225 litre
molarity =?
atomic mass of KNO3 = 101 grams/mole
molarity is calculated by using the formula:
molarity = 
first the number of moles present in the given mass is calculated as:
number of moles = 
number of moles = 
0.44 moles of KNO3
Putting the values in the equation of molarity:
molarity = 
molarity = 1.95
It can be taken as 2.
The molarity of the potassium nitrate solution is 2.
Answer:
From the atmosphere to the hydrosphere by diffusion.
From the atmosphere to the biosphere by photosynthesis.
From the atmosphere to the geosphere by rainfall.
Explanation:
Carbon atom goes from the atmosphere to the hydrosphere by the process of diffusion because there is high concentration of carbondioxide present in the atmosphere. The carbon atom goes from the atmosphere to the biosphere by the process of photosynthesis in plants which uses carbondioxide gas as a raw material in the process for the preparation of organic compounds such as glucose. The carbon atom goes from the atmosphere to the geosphere with the help of rain. When carbondioxide gas react with water in the atmosphere, carbonic acid is formed and comes to the ground through rainfall.
<u>Answer:</u> The volume of concentrated solution required is 9.95 mL
<u>Explanation:</u>
To calculate the pH of the solution, we use the equation:
![pH=-\log[H^+]](https://tex.z-dn.net/?f=pH%3D-%5Clog%5BH%5E%2B%5D)
We are given:
pH = 0.70
Putting values in above equation, we get:
![0.70=-\log[H^+]](https://tex.z-dn.net/?f=0.70%3D-%5Clog%5BH%5E%2B%5D)
![[H^+]=10^{-0.70}=0.199M](https://tex.z-dn.net/?f=%5BH%5E%2B%5D%3D10%5E%7B-0.70%7D%3D0.199M)
1 mole of nitric acid produces 1 mole of hydrogen ions and 1 mole of nitrate ions.
Molarity of nitric acid = 0.199 M
To calculate the volume of the concentrated solution, we use the equation:

where,
are the molarity and volume of the concentrated nitric acid solution
are the molarity and volume of diluted nitric acid solution
We are given:

Putting values in above equation, we get:

Hence, the volume of concentrated solution required is 9.95 mL