Answer:
Greater
Explanation:
The longer the handle, the greater the mechanical advantage and the greater the increase in force that is applied to the bolt.
Mechanical advantage is the rate at which force is multiplied.
- It simply compares the output force to the input force.
- M.A is the force increasing tendency of a tool.
- The longer the handle, the more the mechanical advantage and the lesser the applied force.
Answer:
In chemical bonding: Arrangement of the elements. The horizontal rows of the periodic table are called periods. Each period corresponds to the successive occupation of the orbitals in a valence shell of the atom, with the long periods corresponding to the occupation of the orbitals of a d subshell.
Explanation:
Answer:
(2R,3S)-2-ethoxy-3-methylpentane
and
(2S,3S)-2-ethoxy-3-methylpentane
Explanation:
For this case, we will have
as nucleophile. Also, this compound is also in excess. So, we will have as solvent
a protic solvent. Therefore the Sn1 reaction would be favored.
The first step would be the carbocation formation followed by the attack of the nucleophile. In this case both isomers would be produced: R and S (see figure).
FeBr₃ ⇒ limiting reactant
mol NaBr = 1.428
<h3>Further explanation</h3>
Reaction
2FeBr₃ + 3Na₂S → Fe₂S₃ + 6NaBr
Limiting reactant⇒ smaller ratio (mol divide by coefficient reaction)
211 g of Iron (III) bromide(MW=295,56 g/mol), so mol FeBr₃ :

186 g of Sodium sulfide(MW=78,0452 g/mol), so mol Na₂S :

Coefficient ratio from the equation FeBr₃ : Na₂S = 2 : 3, so mol ratio :

So FeBr₃ as a limiting reactant(smaller ratio)
mol NaBr based on limiting reactant (FeBr₃) :

The least net force applied : Car 3(12 N)
<h3>Further explanation </h3>
Newton's 2nd law explains that the acceleration produced by the resultant force on an object is proportional and in line with the resultant force and inversely proportional to the mass of the object
∑F = m. a
Car 1 ⇒m=0.5 kg, a=36 m/s²

Car 2⇒m=0.8 kg, a=50 m/s²

Car 3⇒m=0.6, a=20 m/s²

Car 4⇒m=1, a=19~m/s²
