Answer:
Weak acid
Explanation:
A titration curve is a graphical description of the change in pH of the solution in the conical flask as the reagent is added from the burette. A titration curve can be plotted for the different kinds of acid and base titrations. The volume of the titrant is always plotted as the independent variable and the pH of the solution as the dependent variable. The equivalence point is read off from the titration curve. A titration curve is very important because it shows the pH at various points during the titration.
A weak acid/strong base titration leads to an equivalence point above 7. From the question, we were told that the pH at equivalence point lies around 8. Hence the unknown substance must be a weak acid.
The identity of the substance is Iron.
<h3>Properties of Iron</h3><h3>Chemical properties</h3>
- The element iron has the atomic number 26 and the symbol Fe
- Electronic configuration of Fe is [AR] 3d6 4s2
- The atomic weight of Iron is 55.847
- The element iron belong to the group VIII of the periodic table
- It is the fourth most prevalent element in the crust of the world
- It is a highly reactive element as it gets rusted readily in the moisture of air
<h3>Physical properties</h3>
- It is a heavy metal in the first transition series
- The color of iron is silvery grey
- High malleability and ductility
- It has a strong electrical conductivity.
Learn more about periodic table on
brainly.com/question/2140373
#SPJ1
Answer:
A pH scale reading 13 indicates a strong base.
Explanation:
From my understanding:
1 -4 is a strong acid
4 - 7 is weak acid
7 - 9 is a weak base
9 - 14 is a strong base
Answer:
<em>What can be added to an atom to cause a nonvalence electron in the atom to temporarily become a valence electron </em>is<u><em> energy</em></u><em>.</em>
Explanation:
The normal state of the atoms, where all the electrons are occupying the lowest possible energy level, is called ground state.
The <em>valence electrons</em> are the electrons that occupy the outermost shell, this is the electrons in the highest main energy level (principal quantum number) of the atom.
So, a <em>nonvalence electron</em> occupies an orbital with less energy than what a valence electron does; in consequence, in order to a nonvalence electron jump from its lower energy level to the higher energy level of a valence electron, the former has to absorb (gain) energy.
This new state is called excited state and is temporary: the electron promoted to the higher energy level will emit the excess energy, in the form of light (photons), to come back to the lower energy level and so the atom return to the ground state.
Answer:
324 meters
Explanation:
I don't really have an explanation