I believe c is the right answer.
Covalent bonding occurs when electrons are shared between atoms. Double and triple covalent bonds occur when four or six electrons are shared between two atoms, and they are indicated in Lewis structures by drawing two or three lines connecting one atom to another.
The number of protons an element has is the same as the atomic number, so the element would have 86 protons.
Answer:
The concentration of I at equilibrium = 3.3166×10⁻² M
Explanation:
For the equilibrium reaction,
I₂ (g) ⇄ 2I (g)
The expression for Kc for the reaction is:
![K_c=\frac {\left[I_{Equilibrium} \right]^2}{\left[I_2_{Equilibrium} \right]}](https://tex.z-dn.net/?f=K_c%3D%5Cfrac%20%7B%5Cleft%5BI_%7BEquilibrium%7D%20%5Cright%5D%5E2%7D%7B%5Cleft%5BI_2_%7BEquilibrium%7D%20%5Cright%5D%7D)
Given:
= 0.10 M
Kc = 0.011
Applying in the above formula to find the equilibrium concentration of I as:
![0.011=\frac {\left[I_{Equilibrium} \right]^2}{0.10}](https://tex.z-dn.net/?f=0.011%3D%5Cfrac%20%7B%5Cleft%5BI_%7BEquilibrium%7D%20%5Cright%5D%5E2%7D%7B0.10%7D)
So,
![\left[I_{Equilibrium} \right]^2=0.011\times 0.10](https://tex.z-dn.net/?f=%5Cleft%5BI_%7BEquilibrium%7D%20%5Cright%5D%5E2%3D0.011%5Ctimes%200.10)
![\left[I_{Equilibrium} \right]^2=0.0011](https://tex.z-dn.net/?f=%5Cleft%5BI_%7BEquilibrium%7D%20%5Cright%5D%5E2%3D0.0011)
![\left[I_{Equilibrium} \right]=3.3166\times 10^{-2}\ M](https://tex.z-dn.net/?f=%5Cleft%5BI_%7BEquilibrium%7D%20%5Cright%5D%3D3.3166%5Ctimes%2010%5E%7B-2%7D%5C%20M)
<u>Thus, The concentration of I at equilibrium = 3.3166×10⁻² M</u>
Answer:
D
Explanation:
I believe it is D. your kinetic energy would be at b. A, the cart would be going at a constant rate, because there is no hill or steep slope.