As,
CuCO₃ ⇆ Cu²⁺ + CO₃²⁻
So,
Kc = [Cu²⁺] [CO₃²⁻] / CuCO₃
Or,
Kc (CuCO₃) = [Cu²⁺] [CO₃²⁻]
Or,
Ksp = [Cu²⁺] [CO₃²⁻]
As,
Ksp = 1.4 × 10⁻¹⁰
So,
1.4 × 10⁻¹⁰ = [x] [x]
Or,
x² = 1.4 × 10⁻¹⁰
Or,
x = 1.18 × 10⁻⁵ mol/L
To cahnge ito g/L,
x = 1.18 × 10⁻⁵ mol/L × 123.526 g/mol
x = 1.45 × 10⁻³ g/L
C! The clownfish hide in the sea anemones for protection
Answer:

Explanation:
Hello!
In this case, when two substances at different temperature are put in contact and an equilibrium temperature is attained, we can evidence that the heat lost by the hot substance (metal) is gained by the cold substance (water) and we can write:

Which can be also written as:

Thus, since we need the specific heat of the metal, we solve for it as shown below:

Best regards.
The balanced chemical equation is:
2H2 + O2 ---> 2H2O
We are given the amount of the product produced from the reaction. This will be the starting point for the calculations.
355 g H2O ( 1 mol H2O/ 18.02 g H2O) ( 1 mol O2 / 2 mol H2O ) ( 32 g O2 / 1 mol O2 ) = 315.205 g O2
The semi will have the hardest time changing direction because of its mass. The more mass there is, the more effort it takes to accelerate and decelerate as well as change direction.