They are arranged in shells
Answer: <span>A geometric isomer with two alkyl groups on the same side of the carbon-carbon double bond is called
<em>cis</em> Isomer.
Explanation: Geometric isomerism takes place about the double bond in alkenes when the alkyl groups are either situated at the same side (<em>
cis</em>) or are situated opposite (
<em>trans</em>) to each other.
Example: <em>
cis</em>
-2-Butene (highlighted red)
<em>
trans</em>
-2-Butene (highlighted blue)</span>
Answer:
1.05 V
Explanation:
Since;
E°cell= E°cathode- E°anode
E°cathode= -0.40 V
E°anode= -1.45 V
E°cell= -0.40-(-1.45) = 1.05 V
Equation of the process;
2Zr(s) + 4Cd^2+(aq) ---->2Zr^4+(aq) + 4Cd(s)
n= 8 electrons transferred
From Nernst's equation;
Ecell = E°cell - 0.0592/n log Q
Ecell= E°cell - 0.0592/8 log [0.5]/[0.5]
Since log 1=0
Ecell= E°cell= 1.05 V
Answer:
NO2- is the reducing agent.
Cr2O7_2- is the oxidizing agent.
H+ is neither
Explanation:
Reduction is the gain in electron. A chemical specie that undergoes reduction is called the oxidizing agent.
Oxidation is simply the loss in electrons. A chemical specie that undergoes oxidation is called the reducing agent.
Let us look at the species.
The first specie is the NO2-. In this specie, the oxidation number of nitrogen changed from +3 to +5 in NO3-. Thus we can see that there is more loss of electron to have caused an increase in the oxidation number positively. This shows an oxidation. Hence, NO2- is the reducing agent.
Let us look at the chromium. We can see that the oxidation number of chromium changed from +7 to +3.
Now we can see that it is a decrease and hence, it is a gain of electron and thus it is reduction. This means the first chromium specie is the oxidizing agent.
The hydrogen ion is simply placed there to balance the ions and hence it is neither the oxidizing nor the reducing agent.
Answer: c. balance
Explanation: Mass is the amount of matter contained in a body.