Answer:
10 moles of SO₂ are produced when 5 moles of FeS₂
Explanation:
Stoichiometry: it is the theoretical proportion in which the chemical species are combined in a chemical reaction. The stoichiometric equation of a chemical reaction relates molecules or number of moles of all the reagents and products that participate in the reaction.
In other words, stoichiometry establishes relationships between the molecules or elements that make up the reactants of a chemical equation with the products of said reaction. The relationships established are molar relationships (that is, moles) between the compounds or elements that make up the chemical equation.
The stoichiometric coefficients of a chemical reaction indicate the proportion in which said substances react.
Taking into account the above, you can apply the following rule of three: by stoichiometry if 4 moles of FeS₂ produce 8 moles of SO₂, then when reacting 5 moles of FeS₂ how many moles of SO₂ will they produce?

moles of SO₂= 10
<u><em>10 moles of SO₂ are produced when 5 moles of FeS₂</em></u>
I assume what you're asking about is, how does the temperature changes when we increase water's mass, according the formula for heat ?
Well the formula is :

(where Q is heat, m is mass, c is specific heat and

is change in temperature. So according this formula, increasing mass will increase the substance's heat, but won't effect it's temperature since they are not related. Unless, if you want to keep the substance's heat constant, in that case when you increase it's mass you will have to decrease the temperature
Answer:
A) 1059 J/mol
B) 17,920 J/mol
Explanation:
Given that:
Cp = 29.42 - (2.170*10^-3 ) T + (0.0582*10^-5 ) T2 + (1.305*10^-8 ) T3 – (0.823*10^-11) T4
R (constant) = 8.314
We know that:

We can determine
from above if we make
the subject of the formula as:




A).
The formula for calculating change in internal energy is given as:

If we integrate above data into the equation; it implies that:



Hence, the internal energy that must be added to nitrogen in order to increase its temperature from 450 to 500 K = 1059 J/mol.
B).
If we repeat part A for an initial temperature of 273 K and final temperature of 1073 K.
then T = 273 K & T2 = 1073 K
∴



Hope this might help ask me if u have any doubts