Answer :
Option D) 2.50 X
Mol/(L s)
Explanation: While calculating the average reaction rate for the given reaction in terms of Cl;

.
using the rate equation which is;

![\frac{delta [Cl]}{delta t}](https://tex.z-dn.net/?f=%20%5Cfrac%7Bdelta%20%5BCl%5D%7D%7Bdelta%20t%7D%20)
=

=
2.50 X
Mol/(L s)
Answer:
[O₂(g)] = 0.0037M
Explanation:
2SO₂(g) + O₂(g) => 2SO₃(g)
Conc: [SO₂(g)] [O₂(g)] [SO₃(g)] and [SO₂(g)] = [SO₃(g)]
Kc = [SO₃(g)]²/[O₂(g)][SO₂(g)]² => Kc = 1/[O₂(g)] = 270 if [SO₂(g)] = [SO₃(g)]
∴ [O₂(g)] = (1/270)M = 0.0037M
<span><span>Iron, Wrought 1482 - 1593- 2900</span><span>Iron, Gray Cast1127 - 1204 - 2200</span><span>Iron, Ductile1149</span></span>
<h2>
Answer: 131.9 g</h2>
<h3>
Explanation:</h3>
<u>Write a Balanced Equation for the decomposition</u>
CaCO₃ → CaO + CO₂
<u></u>
<u>Find Moles of CO₂ Produced</u>
Since the mole ratio of CaCO₃ to CO₂ is 1 to 1,
the moles of CaCO₃ = moles of CO₂
moles of CaCO₃ = mass ÷ molar mass
= 300 g ÷ 100.087 g/mol
= 2.997 moles
∴ moles of CO₂ = 2.997 moles
<u>Determine Mass of CO₂</u>
Mass = moles × molar mass
= 2.997 mol × 44.01 g/mol
= 131.9 g
<u></u>
<h3>∴ when 300 g of calcium carbonate is decomposed, it produces 131.9 g of carbon dioxide.</h3>