The acceleration of the body in terms of the gravitational constant G is G.
According to Newton's law of universal gravitation;
F = Gm1m2/r^2
G = gravitational constant
m1 = mass of the first body
m2 = mass of the second body
r = distance between the two bodies
Substituting values to find the force on the two bodies;
F = G × 1 × 2/1^2
F = 2G
For the 2 Kg mass
F = ma
m = mass
a = acceleration
F = gravitational force
Hence,
2G = 2a
a = 2G/2
a = G
Learn more: brainly.com/question/13860566
The formula is a= chance in velocity/time
A=10-0/2
A=10/2
A=5 m/s^2 (meters per second squared)
Answer:
a. 18.13m/s
b. 0.84m
c. 2.4m
Explanation:
a. to find the speed at which the ball was lunched, we use the horizontal component.Since the point distance from the base of the ball is 24m and it takes 2.20 secs to reach the wall,we can say that
t=distance /speed

Hence the speed at which ball was lunched is 18.13m/s
b. from the equation

the vertical distance at which the ball clears the wall is
y=8.14-7.3=0.84m
c. the time it takes the ball to reach the 6.2m vertically

the horizontal distance covered at this speed is

Answer:
Here we have some of the requirement of practical fuel are
1. It must contain large amount of stored energy. So that more amount of power output available to run the engines, motors etc.
2. It must occur in abundance in nature or be easy to produce.
3. The fuel must be made up of elements that combine easily with oxygen. Foe example if hydrogen molecules reacts with oxygen. Then the products are at the reaction of lower energy than the reactants, the result is the explosive release of energy and the product of water.
The ion has a charge of 1 +.
A neutral ion would have the same number of protons and neutrons. The neutrons have no charge (they're neutral) so they don't matter when it comes to the charge of an ion. This ion has 30 protons (+) and 29 electrons (-). There is 1 more proton than there are electrons so the ion has a charge of 1 +.