Explanation:
Given that,
A ball is tossed straight up with an initial speed of 30 m/s
We need to find the height it will go and the time it takes in the air.
At its maximum height, its final speed, v = 0 and it will move under the action of gravity. Using equation of motion :
v = u +at
Here, a = -g
v = u -gt
i.e. u = gt

So, the time for upward motion is 3.06 seconds. It means that it will in air for 3.06×2 = 6.12 seconds
Let d is the maximum distance covered by it.

Putting all values

Hence, it will go to a height of 45.91 m and it will in the air for 6.12 seconds.
I can give you a search engine that could help you with all ir hw its called socratic it uses everything on the internet to search for answers it’s literally a search engine
Answer:
-
Explanation:
We are given that
Mass of cars= m=1900 kg
Initial speed of car=u=20 m/s
Final speed of car=v=0
Time=
=1.3 s
We have to find the average force exerted on the car.
Average force=



Hence, the average force exerted on the car that hits a line of water barrels=-
Explanation:
Below is an attachment containing the solution.