A wagon is pulled at an angle of 30 degrees to the horizontal.
(a) The stress in the post is 1,568,000 N/m²
(b) The strain in the post is 7.61 x 10⁻⁶
(c) The change in the post’s length when the load is applied is 1.9 x 10⁻⁵ m.
<h3>Area of the steel post</h3>
A = πd²/4
where;
d is the diameter
A = π(0.25²)/4 = 0.05 m²
<h3>Stress on the steel post</h3>
σ = F/A
σ = mg/A
where;
- m is mass supported by the steel
- g is acceleration due to gravity
- A is the area of the steel post
σ = (8000 x 9.8)/(0.05)
σ = 1,568,000 N/m²
<h3>Strain of the post</h3>
E = stress / strain
where;
- E is Young's modulus of steel = 206 Gpa
strain = stress/E
strain = (1,568,000) / (206 x 10⁹)
strain = 7.61 x 10⁻⁶
<h3>Change in length of the steel post</h3>
strain = ΔL/L
where;
- ΔL is change in length
- L is original length
ΔL = 7.61 x 10⁻⁶ x 2.5
ΔL = 1.9 x 10⁻⁵ m
Learn more about Young's modulus of steel here: brainly.com/question/14772333
#SPJ1
Answer:
It will be cut in half
Explanation:
The diffraction of a slit is given by the formula
a sin θ = m where
a = width of the slit,
λ = wavelength and
m = integer that determines the order of diffraction.
Next we divide both sides by a, we have
sin θ = m λ / a
Also, recall that
a’ = 2 a
Then we substitute in the previous equation
2asin θ' = m λ, if divide by 2a, we have
sin θ' = (m λ / 2a).
Now again, from the first equation, we said that sin θ = m λ / a, so we substitute
sin θ ’= sin θ / 2
Then we use trigonometry to find the width, we say
tan θ = y / L
Since the angle is small, we then have
tan θ = sin θ / cos θ
tan θ = sin θ, this then means that
sin θ = y / L
we will then substitute
y’ / L = y/L 1/2
y' = y / 2
this means that when the slit width is doubled the pattern width will then be halved
Answer:
a) There are 100 centimeters in 1 meter.
b)
Explanation:
a) We have the conversion
1 m = 100 cm
So there are 100 centimeters in 1 meter.
b) 1 inch = 2.54 cm
Answer:
T = 0.003 s
(Period is written as T)
Explanation:
Period = time it takes for one wave to pass (measured in seconds)
frequency = number of cycles that occur in 1 second
(measured in Hz / hertz / 1 second)
Period : T
frequency : f
So, if we know that the frequency of a wave is 300 Hz, we can find the period of the wave from the relation between frequency and period
T = f =
to find the period (T) of this wave, we need to plug in the frequency (f) of 300
T =
T = 0.00333333333
So, the period of a wave that has a frequency of 300 Hz is 0.003 s
[the period/T of this wave is 0.003 s]