Answer:

Explanation:
Hello,
In this case, for the given reaction at equilibrium:

We can write the law of mass action as:
![Keq=\frac{[CH_3OH]}{[CO][H_2]^2}](https://tex.z-dn.net/?f=Keq%3D%5Cfrac%7B%5BCH_3OH%5D%7D%7B%5BCO%5D%5BH_2%5D%5E2%7D)
That in terms of the change
due to the reaction extent we can write:
![Keq=\frac{x}{([CO]_0-x)([H_2]_0-2x)^2}](https://tex.z-dn.net/?f=Keq%3D%5Cfrac%7Bx%7D%7B%28%5BCO%5D_0-x%29%28%5BH_2%5D_0-2x%29%5E2%7D)
Nevertheless, for the carbon monoxide, we can directly compute
as shown below:
![[CO]_0=\frac{0.45mol}{1.00L}=0.45M\\](https://tex.z-dn.net/?f=%5BCO%5D_0%3D%5Cfrac%7B0.45mol%7D%7B1.00L%7D%3D0.45M%5C%5C)
![[H_2]_0=\frac{0.57mol}{1.00L}=0.57M\\](https://tex.z-dn.net/?f=%5BH_2%5D_0%3D%5Cfrac%7B0.57mol%7D%7B1.00L%7D%3D0.57M%5C%5C)
![[CO]_{eq}=\frac{0.28mol}{1.00L}=0.28M\\](https://tex.z-dn.net/?f=%5BCO%5D_%7Beq%7D%3D%5Cfrac%7B0.28mol%7D%7B1.00L%7D%3D0.28M%5C%5C)
![x=[CO]_0-[CO]_{eq}=0.45M-0.28M=0.17M](https://tex.z-dn.net/?f=x%3D%5BCO%5D_0-%5BCO%5D_%7Beq%7D%3D0.45M-0.28M%3D0.17M)
Finally, we can compute the equilibrium constant:

Best regards.
Some fossils provide clues to the environment and climate of the time the organism lived.
Answer:
C. Involves a metal and a nonmetal.
Explanation:
Ionic compound involves a metal and a non-metal. Ionic compounds have electrovalent bonds between them.
These compounds are usually made up of metals and non - metals combining to form a unit.
- The metals usually has low electronegativity and transfers it electrons to the non - metal.
- The non-metal has high affinity for the electron.
- The electrostatic attraction between the ions formed results in the ionic bond.
Answer:
Aspirin was purified in the lab by recrystallizing the crude aspirin. The melting point of the purified aspirin is expected to be lower than the melting point of crude aspirin.
Explanation:
The presence of impurities in a sample lowers the melting point of the impure substance. Hence the melting point of an impure substance is always less than the melting point of the corresponding pure substance.
Bearing this in mind, the statement "Aspirin was purified in the lab by recrystallizing the crude aspirin. The melting point of the purified aspirin is expected to be lower than the melting point of crude aspirin." is found to be false since impure substances tend to have a slightly lower melting point than the pure substance, and a broader melting temperature range.