Answer:
T = 246 K
Explanation:
Given that,
Number of moles, n = 0.750 mol
The volume of the cylinder, V = 6850 mL = 6.85 L
Pressure of the gas, P = 2.21 atm
We need to find the temperature of the gas stored in the cylinder. We know that,
PV= nRT
Where
R is gas constant
T is temperature
So,

or
T = 246 K
So, the temperature of the gas is equal to 246 K.
Answer:
The correct matching of the air mass and the letters in the word bank are given as follows;
1. Warm and humid ↔ D
2. Extremely cold and dry ↔ B
3. Cold and dry ↔ A
4. Cold and humid ↔ C
5. Warm and dry ↔ E
Where;
A Represents continental polar
B Represents Artic
C Represents Maritime Polar
D Represents Maritime Tropical
E Represents Continental Tropical
Explanation:
A. A continental polar is one that can be described as a cold and dry climate as the region is located at a further away from the oceanic water bodies that add humidity to the climate
B. The regions of the Artic and the Antarctic have very limited amount of precipitation every year because the air is very cold as well as dry
C. A polar climate is a cold climate region, while a maritime climate is humid.
Therefore, the maritime polar climate combines both cold and humid conditions
D. A warm and humid region has high rainfall and humidity, as such the maritime climate which are humid and the tropical climate, which are warm, combine to give a warm and humid climate
E. The continental tropical climate can be described as warm and dry, compared to the continental water bodies, due to the location being distant from and therefore, the absence of high moisture containing wind that comes from the oceans.
Answer:
4.75 is the equilibrium constant for the reaction.
Explanation:

Equilibrium concentration of reactants :
![[CO]=0.0590 M,[H_2O]=0.00600 M](https://tex.z-dn.net/?f=%5BCO%5D%3D0.0590%20M%2C%5BH_2O%5D%3D0.00600%20M)
Equilibrium concentration of products:
![[CO_2]=0.0410 M,[H_2]=0.0410 M](https://tex.z-dn.net/?f=%5BCO_2%5D%3D0.0410%20M%2C%5BH_2%5D%3D0.0410%20M)
The expression of an equilibrium constant is given by :
![K_c=\frac{[CO_2][H_2]}{[CO][H_2O]}](https://tex.z-dn.net/?f=K_c%3D%5Cfrac%7B%5BCO_2%5D%5BH_2%5D%7D%7B%5BCO%5D%5BH_2O%5D%7D)


4.75 is the equilibrium constant for the reaction.
The third is one: controlled burn
The answer is: 0.158 mol
You find this by doing:
number of moles (n) = mass (m) / molar mass (M)
n=158.034/25.0