Answer:
First confirm the reaction is balanced:
C3H8 + 5O2 --> 3CO2 + 4H20 (3 cabon - check; 8 hydrogen - check; 10 oxygen - check).
a) In the equation there is a 5:1 ratio between propane and oxygen. We also know that number of mole is proportional to pressure and volume. Since pressure is constant (STP) then the volume of O2 is 7.2 * 5 = 36 litres.
b) For a near ideal gas that PV = nRT (combined gas law). So for 7.2 litres propane we find n(propane) = 101.3 * 7.2/8.314*298 ~ 0.29 mole (using metric units throughout for simplicity).
There is a 1:3 ratio between propane and CO2. Therefore 3 * 0.29 = 0.87 mole of CO2 is produced.
MW(CO2) ~ 44 g/mol. Therefore m(CO2) = 44 * 0.87 ~ 38.3 g
c) We know we need more oxygen than propane (due to the 1:5 ratio) so oxygen is the limiting reagent. Again Volume is proportional to number of mole and we see there is a 5:4 ratio between oxygen and water. Therefore the volume of water vapour produced will be (4/5) * 15 = 12 litres.
The other questions use the same technique and will give you some much needed practice.
Explanation:
This polarity makes water molecules attracted to each other. The oxygen-hydrogen bond in the alcohol molecule is also polar. But, the carbon hydrogen bonds in the rest of the alcohol molecule are nonpolar. In these bonds, the electrons are shared more or less evenly.
Molality is one way of expressing concentration of a solute in a solution. It is expressed as the mole of solute per kilogram of the solvent. To calculate for the molality of the given solution, we need to convert the mass of solute into moles and divide it to the mass of the solvent.
Molality = 29.5 g glucose (1 mol / 180.16 g ) / .950 kg water
Molality = 0.1724 mol / kg
This is an incomplete question, here is a complete question.
The conversion of cyclopropane to propene occurs with a first-order rate constant of 2.42 × 10⁻² hr⁻¹. How long will it take for the concentration of cyclopropane to decrease from an initial concentration 0.080 mol/L to 0.053 mol/L?
Answer : The time taken will be, 17.0 hr
Explanation :
Expression for rate law for first order kinetics is given by:

where,
k = rate constant = 
t = time passed by the sample = ?
a = initial concentration of the reactant = 0.080 M
a - x = concentration left = 0.053 M
Now put all the given values in above equation, we get


Therefore, the time taken will be, 17.0 hr
Actually, the ionic equation for this is a reversible
equation since codeine is a weak base. Any weak base or weak acids do not
completely dissociate which makes them a reversible process. The ionic equation
for this case is:
<span>C18H21O3N + H3O+ </span><=>
C18H21O3NH+ + H2O