The amount of potential energy the block contains is 2,822.4 Joules
<u>Given the following data:</u>
- Height of platform = 24 meters.
We know that the acceleration due to gravity (g) of an object on planet Earth is equal to 9.8
.
To determine the amount of potential energy the block contains:
Mathematically, potential energy (P.E) is given by the formula;

Where:
- g is the acceleration due to gravity.
- h is the height of an object.
Substituting the parameters into the formula, we have;

Potential energy (P.E) = 2,822.4 Joules
Read more: brainly.com/question/23153766
Answer:
a) Linear equation
Explanation:
Definition of acceleration

if a=constant and we integrate the last equation

So the relation between the time and the velocity is linear. If we plot the velocity in function of time, the plot is a line, and the acceleration is the slope of this line.
The friction between the tires and the road causes loss of energy in the form of heat-energy.
<h3>What is kinetic energy?</h3>
The term kinetic energy refers to the energy of an object that is in motion. The pasengers that are sitting at a point possess potential energy. If the bus stops suddenly, the potential energy of the passengers is converted to kinetic energy as they move forward.
Since friction causes loss of energy, the friction between the tires and the road causes looss of energy in the form of heat-energy.
Learn more about kinetic energy: brainly.com/question/12669551
Answer:
I may not have the answer so i'll just give up some hints.
Multiply the time by the acceleration due to gravity to find the velocity when the object hits the ground. If it takes 9.9 seconds for the object to hit the ground, its velocity is (1.01 s)*(9.8 m/s^2), or 9.9 m/s. Choose how long the object is falling. In this example, we will use the time of 8 seconds. Calculate the final free fall speed (just before hitting the ground) with the formula v = v₀ + gt = 0 + 9.80665 * 8 = 78.45 m/s . Find the free fall distance using the equation s = (1/2)gt² = 0.5 * 9.80665 * 8² = 313.8 m .h = 0.5 * 9.8 * (1.5)^2 = 11m. b. V = gt = 9.8 * 1.5 = 14.7m/s. A feather and brick dropped together. Air resistance causes the feather to fall more slowly. If a feather and a brick were dropped together in a vacuum—that is, an area from which all air has been removed—they would fall at the same rate, and hit the ground at the same time.When an object's point is taller the thing that is going down it will go faster than when the point is lower. EXAMPLE: The object is the tennis ball if you drop it down the higher hill it will be faster than if you drop it down a shorter hill. In other words, if two objects are the same size but one is heavier, the heavier one has greater density than the lighter object. Therefore, when both objects are dropped from the same height and at the same time, the heavier object should hit the ground before the lighter one.
I hope my little bit (big you may say) hint help you with your question.
Answer:
P=I*I*R
Where P is power
I is current
R is Resistance
P=2*2*100
P=400W
Explanation:
Power is the rate of doing work.
From the Ohm’s law V=IR
Power=I*I*R