1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Virty [35]
3 years ago
13

Which of the following temperatures is the coldest? A) 5 degrees B)0 degrees C) -15 degrees D) -7 degrees

Physics
2 answers:
Svetach [21]3 years ago
7 0

Well, it's most likely choice-C, but ONLY if the choices are all measured on the same temperature scale.  

For example . . .

--> 5 degrees Fahrenheit is colder than 0 degrees Celsius

--> 0 degrees Fahrenheit and 5 degrees Fahrenheit are both colder than -7 degrees Celsius, AND they're both colder than -15 degrees Celsius

Tresset [83]3 years ago
4 0
It’s c -15 degrees because it it has below O which is below freezing
You might be interested in
A train brakes from 25 m/s to rest in 30 sec. What is its deceleration?
givi [52]

Answer:

a= -0.83m\s^2

Explanation:

a = v \ t

a = -25 \ 30 = -0.833 m\s^2

the object is slowing down 0.83 meter every second

8 0
3 years ago
Big Ben, a large artifact in England, has a mass of 1x10^8 kilograms and the Empire State Building 1x10^9 kilograms. The distanc
TiliK225 [7]

Answer:

The force, exerted by Big Ben on the Empire State Building is 2.66972 × 10⁻⁷ N

Explanation:

The question relates to the force of gravity experienced between two bodies

The given parameters are;

The mass of Big Ben, M₁ = 1 × 10⁸ kg

The mass of the Empire State Building, M₂ = 1 × 10⁹ kg

The distance between the two Big Ben and the Empire State Building, r = 5,000,000 meters

By Newton's Law of gravitation, we have;

F=G \times \dfrac{M_{1} \times M_{2}}{r^{2}}

Where;

F = The force exerted by Big Ben on the Empire State Building and vice versa

G = The universal gravitational constant = 6.67430 × 10⁻¹¹ N·m²/kg²

M₁, M₂, and r are the given parameters

By plugging in the values of the parameters and the constant into the equation for Newton's Law of gravitation, we have;

F=6.67430 \times 10^{-11} \times \dfrac{1 \times 10^8 \times 1 \times 10^9}{(5,000,000)^{2}} = 2.66972 \times 10^{-7}

The force, 'F', exerted by Big Ben on the Empire State Building is F = 2.66972 × 10⁻⁷ N.

3 0
3 years ago
A spring is hung from the ceiling. A 0.442-kg block is then attached to the free end of the spring. When released from rest, the
siniylev [52]

Answer:

K=58.8N/m

Explanation:

From the question we are told that:

Mass M=0.442

Drop distance d=0.150

Generally the equation for Spring Constant is mathematically given by

 K=\frac{2mg}{x}

 K=\frac{2*0.442*9.8}{1.150}

 K=58.8N/m

6 0
3 years ago
A horizontal force of 92.7 N is applied to a 40.5 kg crate on a rough, level surface. If the crate accelerates at 1.13 m/s2, wha
lord [1]

Answer:

The value is F_f =  46.935 \  N

Explanation:

From the question we are told that

    The  magnitude of the horizontal force is F  =  92.7 \  N

     The mass of the crate is  m  =  40.5 \  kg

     The acceleration of the crate is  a =  1.13 \ m/s

Generally the net force acting on the crate is mathematically represented as

       F_{net} =  F -  F_f =  ma

Here F_f is force of kinetic friction (in N) acting on the crate

      So  

            92.7  -  F_f =  40.5 * 1.13

=>         F_f =  46.935 \  N

5 0
3 years ago
A disk of mass M and radius R rotates at angular velocity ω0. Another disk of mass M and radius r is dropped on top of the rotat
AleksandrR [38]

Answer:

\omega = \frac{(R^2\omega_o}{(R^2 + r^2)}

Explanation:

As we know that there is no external torque on the system of two disc

then the angular momentum of the system will remains conserved

So we will have

L_i = L_f

now we have

L_i = (\frac{1}{2}MR^2)\omega_o

also we have

L_f = (\frac{1}{2}MR^2 + \frac{1}{2}Mr^2)\omega

now from above equation we have

(\frac{1}{2}MR^2)\omega_o  = (\frac{1}{2}MR^2 + \frac{1}{2}Mr^2)\omega

now we have

\omega = \frac{MR^2\omega_o}{(MR^2 + Mr^2)}

\omega = \frac{(R^2\omega_o}{(R^2 + r^2)}

6 0
3 years ago
Other questions:
  • A mother and father have two daughters. The daughters have some similar and some different physical features. Which statement be
    10·2 answers
  • Suppose you are riding your bike along a path that is also used by in-line skaters. You pass a skater, and another biker passes
    13·1 answer
  • Consider the following statements:
    11·1 answer
  • How are analog and digital signals similar? Check all that apply.
    15·2 answers
  • The _____ law of thermodynamics states that energy can't be created or destroyed. Two natural sources of energy on Earth are the
    6·2 answers
  • Please help.
    14·2 answers
  • Parallel light rays with a wavelength of 563 nm fall on a single slit. On a screen 3.30 m away, the distance between the first d
    12·1 answer
  • If you see something not being right on a project you are working-even if it isn't you doing the wrong thing-it is your ethical
    10·2 answers
  • Medium frequency waves are called what
    9·1 answer
  • What is the power through a device with a resistance of 100 ohms if a current of 8 A is running through it?
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!