Answer:
procedure attached below
The material to be used will have a %Cw of 34.5%Cw which is < 40%Cw
Explanation:
<em>Given data:</em>
Minimum tensile strength = 865 MPa
Ductility = 10%EL
Desired Final diameter = 6.0 mm
20% cold worked 7.94 mm diameter 1040 steel stock
<u> Describe the procedure you would follow to obtain this material.</u>
assuming 1040 steel experiences cracking at 40%CW
<em>attached below is a detailed procedure of obtaining the material</em>
The material to be used will have a %Cw of 34.5%Cw which is < 40%Cw
Given Information:
Inductance = L = 5 mH = 0.005 H
Time = t = 2 seconds
Required Information:
Current at t = 2 seconds = i(t) = ?
Energy at t = 2 seconds = W = ?
Answer:
Current at t = 2 seconds = i(t) = 735.75 A
Energy at t = 2 seconds = W = 1353.32 J
Explanation:
The voltage across an inductor is given as

The current flowing through the inductor is given by

Where L is the inductance and i(0) is the initial current in the inductor which we will assume to be zero since it is not given.
![i(t) = \frac{1}{0.005} \int_0^t \mathrm{5(1-e^{-0.5t}}) \,\mathrm{d}t \,+ 0\\\\i(t) = 200 \int_0^t \mathrm{5(1-e^{-0.5t}}) \,\mathrm{d}t \\\\i(t) = 200 \: [ {5\: (t + \frac{e^{-0.5t}}{0.5})]_0^t \\i(t) = 200\times5\: \: [ { (t + 2e^{-0.5t} + 2 )] \\](https://tex.z-dn.net/?f=i%28t%29%20%3D%20%5Cfrac%7B1%7D%7B0.005%7D%20%5Cint_0%5Et%20%5Cmathrm%7B5%281-e%5E%7B-0.5t%7D%7D%29%20%5C%2C%5Cmathrm%7Bd%7Dt%20%5C%2C%2B%200%5C%5C%5C%5Ci%28t%29%20%3D%20200%20%5Cint_0%5Et%20%5Cmathrm%7B5%281-e%5E%7B-0.5t%7D%7D%29%20%5C%2C%5Cmathrm%7Bd%7Dt%20%5C%5C%5C%5Ci%28t%29%20%3D%20200%20%5C%3A%20%5B%20%7B5%5C%3A%20%28t%20%2B%20%5Cfrac%7Be%5E%7B-0.5t%7D%7D%7B0.5%7D%29%5D_0%5Et%20%5C%5Ci%28t%29%20%3D%20200%5Ctimes5%5C%3A%20%5C%3A%20%5B%20%7B%20%28t%20%2B%202e%5E%7B-0.5t%7D%20%2B%202%20%29%5D%20%5C%5C)

So the current at t = 2 seconds is

The energy stored in the inductor at t = 2 seconds is

Incomplete question. However, I provided information that could assist you in identifying the main problem or issue addressed in any case study.
Explanation:
First, note that a case study is simply a learning aid that allows one to learn from a real-life scenario.
To determine the main problems of a case study one needs to:
- Read the case as many times as possible to become familiar with the message been expressed. For example,<em> by highlighting or underlining the most important facts </em>it can help you to discover the main problem or issue.
- Check for any facts provided in the case study, by so doing you can identify the most important problems.
Thus, by taking these few steps you may be able to determine the main problem in that case study.
Answer:
Yes
Explanation:
As we know that heat transfer take place from high temperature body to low temperature body.
In the given problem ,the temperature of the air is high as compare to the temperature of can of bear ,so the heat transfer will take place from air to can of bear and at the last stage when temperature of can of bear will become to the temperature of air then heat transfer will be stop.Because temperature of the both body will become at the same and this stage is called thermal equilibrium.
So an office worker claim is correct.