Answer:
Wind energy is converted to Mechanical energy which is then converted in to electrical energy
Explanation:
In a wind mill the following energy conversions take place
a) Wind energy is converted into Mechanical energy (rotation of rotor blades)
b) Mechanical energy is converted into electrical energy (by using electric motor)
This electrical energy is then used for transmission through electric lines.
Answer: 3 different types of people using Highway Transportation system are :
1. Pedestrians - should be given priority while driving.
2. Cyclists - should be given enough space on road.
3. Motorcyclists- should be given enough space on road.
Explanation:
1. Pedestrians - Most of pedestrians use to walk on the footpath along side road that keeps them on a safe side. But there are places without footpath along side road, in that case they have to walk on the road itself. Here, we need to take care for them. We need to wait in case they are crossing road and also check for them while taking a turn.
2. Cyclists - They travel on road but are tough to figure out. They travel at a slower pace compared to cars. To avoid any accident with them, we are supposed to give them enough space which should be equivalent to a car's space.
3. Motorcyclists - They can pass by very closely and also come between lanes. Most of the things to be considered here are same as that of cyclists. Here also, we need to check for them carefully while taking a turn. Also, need to give them enough space.
Answer:
(a)
<em>d</em>Q = m<em>d</em>q
<em>d</em>q = <em>d</em>T
= (T₂ - T₁)
From the above equations, the underlying assumption is that remains constant with change in temperature.
(b)
Given;
V = 2L
T₁ = 300 K
Q₁ = 16.73 KJ , Q₂ = 6.14 KJ
ΔT = 3.10 K , ΔT₂ = 3.10 K for calorimeter
Let be heat constant of calorimeter
Q₂ = ΔT
Heat absorbed by n-C₆H₁₄ = Q₁ - Q₂
Q₁ - Q₂ = m ΔT
number of moles of n-C₆H₁₄, n = m/M
ρ = 650 kg/m³ at 300 K
M = 86.178 g/mol
m = ρv = 650 (2x10⁻³) = 1.3 kg
n = m/M => 1.3 / 0.086178 = 15.085 moles
Q₁ - Q₂ = m ' ΔT
= (16.73 - 6.14) / (15.085 x 3.10)
= 0.22646 KJ mol⁻¹ k⁻¹
Answer:
Explanation:
The most common HFC used in air conditioners is R-410A. This refrigerant is better than R-22 in terms of “Ozone Depletion” potential and energy efficiency, but it still causes global warming. A few more HFCs that are commonly used are: R-32 in Air Conditioners and R-134A in refrigerators.
Answer:
The mass flow rate of cooling water required to cool the refrigerant is .
Explanation:
A condenser is a heat exchanger used to cool working fluid (Refrigerant 134a) at the expense of cooling fluid (water), which works usually at steady state. Let suppose that there is no heat interactions between condenser and surroundings.The condenser is modelled after the First Law of Thermodynamics, which states:
The mass flow rate of the cooling water is now cleared:
Given that , , and , the mass flow of the cooling water is:
The mass flow rate of cooling water required to cool the refrigerant is .