Answer:
The correct answer is option (A) 0.060 uF
Note: Kindly find an attached image of the complete question below
Sources: The complete question was well researched from Quizlet.
Explanation:
Solution
Given that:
C₁ = 0.1 μF
C₂ =0.22 μF
C₃ = 0.47 μF
In this case, C₁, C₂ and C₃ are in series
Thus,
Their equivalent becomes:
1/Ceq = (1/C₁ + 1/C₂ +1/C₃
1/Ceq =[ (1/0.1 + 1/0.22 +1/0.47)]
1/Ceq =[(0.22 * 0.47) + (0.1 * 0.47) + (0.1 * 0.22)/(0.1 * 0.22 *0.47)]
1/Ceq =[(0.1034 + 0.047 + 0.022)/(0.01034)
1/Ceq =[(0.1724)/(0.01034)]
1/Ceq = [(16.67)]
1/Ceq =(1/16.67) = 0.059μf
Ceq = 0.059μf ≈ 0.060μf
Therefore the equivalent capacitance of the three series capacitors is 0.060μf
Answer:

Explanation:
z = number of atoms
M = Molar mass of zirconium
N = Avogadro’s number
Vc = volume of zirconium unit cell
d = density

z = 6 atoms per unit cell
M = 91.224 g/mol
N = 
d = 




Answer:
Option E
Explanation:
All the given statements are true except the velocity gradients normal to the flow direction are small since these are not normally small. It's true that viscous effects are present only inside the boundary layer and the fluid velocity equals the free stream velocity at the edge of the boundary layer. Moreover, Reynolds number is greater than unity and the fluid velocity is zero at the surface of the object.
Answer:
See explanation
Explanation:
Solution:-
- The shell and tube heat exchanger are designated by the order of tube and shell passes.
- A single tube pass: The fluid enters from inlet, exchange of heat, the fluid exits.
- A multiple tube pass: The fluid enters from inlet, exchange of heat, U bend of the fluid, exchange of heat, .... ( nth order of pass ), and then exits.
- By increasing the number of passes we have increased the "retention time" of a specific volume of tube fluid; hence, providing sufficient time for the fluid to exchange heat with the shell fluid.
- By making more U-turns we are allowing greater length for the fluid flow to develop with " constriction and turns " into turbulence. This turbulence usually at the final passes allows mixing of fluid and increases the heat transfer coefficient by:
U ∝ v^( 0.8 ) .... ( turbulence )
- The higher the velocity of the fluids the greater the heat transfer coefficient. The increase in the heat transfer coefficient will allow less heat energy carried by either of the fluids to be wasted ; hence, reduced losses.
Thereby, increases the thermal efficiency of the heat exchanger ( higher NTU units ).
Answer: Let us use the pickled file - DeckOfCardsList.dat.
Explanation: So that our possible outcome becomes
7♥, A♦, Q♠, 4♣, 8♠, 8♥, K♠, 2♦, 10♦, 9♦, K♥, Q♦, Q♣
HPC (High Point Count) = 16