1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Finger [1]
2 years ago
5

What are the elements of parallel computing

Engineering
2 answers:
MariettaO [177]2 years ago
5 0
Answer:
Large problems can often be divided into smaller ones which can then be solved at the several different forms of parallels computing bit-level, instruction-level, data and task parellelism.
liraira [26]2 years ago
4 0

Elements of Parallel Computing:-

Computer systems organization. Dependable and fault-tolerant systems and networks.

Computing methodologies. Parallel computing methodologies. ...

General and reference. Cross-computing tools and techniques. ...

Networks. Network performance evaluation.

Software and its engineering. ...

Theory of computation.

You might be interested in
The distribution of actual weights of 8‑ounce wedges of cheddar cheese produced at a dairy is Normal, with mean 8.1 ounces and s
s344n2d4d5 [400]

Answer:

sampling distribution

Explanation:

Sampling distribution is distribution of multiple samples' satistics of a population.

3 0
3 years ago
Air exits a compressor operating at steady-state, steady-flow conditions at 150 oC, 825 kPa, with a velocity of 10 m/s through a
ioda

Answer:

a) Qe = 0.01963 m^3 / s , mass flow rate m^ = 0.1334 kg/s

b) Inlet cross sectional area = Ai = 0.11217 m^2 , Qi = 0.11217 m^3 / s    

Explanation:

Given:-

- The compressor exit conditions are given as follows:

                  Pressure ( Pe ) = 825 KPa

                  Temperature ( Te ) = 150°C

                  Velocity ( Ve ) = 10 m/s

                  Diameter ( de ) = 5.0 cm

Solution:-

- Define inlet parameters:

                  Pressure = Pi = 100 KPa

                  Temperature = Ti = 20.0

                  Velocity = Vi = 1.0 m/s

                  Area = Ai

- From definition the volumetric flow rate at outlet ( Qe ) is determined by the following equation:

                   Qe = Ae*Ve

Where,

           Ae: The exit cross sectional area

                   Ae = π*de^2 / 4

Therefore,

                  Qe = Ve*π*de^2 / 4

                  Qe = 10*π*0.05^2 / 4

                  Qe = 0.01963 m^3 / s

 

- To determine the mass flow rate ( m^ ) through the compressor we need to determine the density of air at exit using exit conditions.

- We will assume air to be an ideal gas. Thus using the ideal gas state equation we have:

                   Pe / ρe = R*Te  

Where,

           Te: The absolute temperature at exit

           ρe: The density of air at exit

           R: the specific gas constant for air = 0.287 KJ /kg.K

             

                ρe = Pe / (R*Te)

                ρe = 825 / (0.287*( 273 + 150 ) )

                ρe = 6.79566 kg/m^3

- The mass flow rate ( m^ ) is given:

               m^ = ρe*Qe

                     = ( 6.79566 )*( 0.01963 )

                     = 0.1334 kg/s

- We will use the "continuity equation " for steady state flow inside the compressor i.e mass flow rate remains constant:

              m^ = ρe*Ae*Ve = ρi*Ai*Vi

- Density of air at inlet using inlet conditions. Again, using the ideal gas state equation:

               Pi / ρi = R*Ti  

Where,

           Ti: The absolute temperature at inlet

           ρi: The density of air at inlet

           R: the specific gas constant for air = 0.287 KJ /kg.K

             

                ρi = Pi / (R*Ti)

                ρi = 100 / (0.287*( 273 + 20 ) )

                ρi = 1.18918 kg/m^3

Using continuity expression:

               Ai = m^ / ρi*Vi

               Ai = 0.1334 / 1.18918*1

               Ai = 0.11217 m^2          

- From definition the volumetric flow rate at inlet ( Qi ) is determined by the following equation:

                   Qi = Ai*Vi

Where,

           Ai: The inlet cross sectional area

                  Qi = 0.11217*1

                  Qi = 0.11217 m^3 / s    

- The equations that will help us with required plots are:

Inlet cross section area ( Ai )

                Ai = m^ / ρi*Vi  

                Ai = 0.1334 / 1.18918*Vi

                Ai ( V ) = 0.11217 / Vi   .... Eq 1

Inlet flow rate ( Qi ):

                Qi = 0.11217 m^3 / s ... constant  Eq 2

               

6 0
3 years ago
Calculate the rate at which body heat is conducted through the clothing of a skier in a steady- state process, given the followi
olga2289 [7]

Answer:

230.4W

Explanation:

Heat transfer by conduction consists of the transport of energy in the form of heat through solids, in this case a jacket.

the equation is as follows

Q=\frac{KA(T2-T1)}{L} \\

Where

Q=heat

k=conductivity=0.04

A=Area=1.8m^2

T2=33C

T1=1C

L=thickness=1cm=0.01mQ=\frac{(0.04)(1.8m^2)(33-1)}{0.01m}

Q=230.4W

the skier loses heat at the rate of 230.4W

4 0
3 years ago
Can someone help me with this maze shown below.
Gnoma [55]
We can’t see the maze
3 0
3 years ago
Martha has been running a small business for two years. She now seeks additional investment to finance her business. She has fou
Dafna11 [192]

Answer:

The correct option is B) Balance Sheet

Explanation:

A Balance Sheet offers a description of a company's obligations, assets, and investments as well as net income over a given span of time such as a period of 6 months or 12 months, for instance.

Also known as the Statement of Financial Position, it contains sufficient information for investors and business owners to determine the company's financial performance in that period as well as to compare the performance of that company with industry norms or competition.

Cheers

8 0
3 years ago
Other questions:
  • g A 30-m-diameter sedimentation basin has an average water depth of 3.0 m. It is treating 0.3 m3/s wastewater flow. Compute over
    8·1 answer
  • Calculate the potential energy in kJ of a human body (70 kg) possesses on top of the Empire State Building (1,250 ft tall).
    7·1 answer
  • Water flows through a horizontal 60 mm diameter galvanized iron pipe at a rate of 0.02 m3/s. If the pressure drop is 135 kPa per
    9·1 answer
  • Write a program that uses while loops to perform the following steps: Step a: Prompt the user to input two integers: firstNum an
    12·1 answer
  • With a brief description, What are the 14 principles of management by fayol.​
    10·1 answer
  • The figure angle c measures 38°
    9·1 answer
  • Demonstreaza in 20 de propoziti ca snoava pacala si zarzarele boerului e o snoava
    12·1 answer
  • La Patrulla Fronteriza de los Estados Unidos analiza la compra de un helicóptero nuevo para la vigilancia aérea de la frontera d
    14·1 answer
  • A continuously variable transmission:
    13·1 answer
  • Which step in the engineering design process does not come before building a<br> prototype?
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!