1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
cricket20 [7]
3 years ago
13

A torsional pendulum consists of a 5 kg uniform disk with a diameter of 50 cm attached at its center to a rod 1.5 m in length. T

he torsional spring constant is 0.625 N-m/rad. Disregarding the mass of the rod, what is the natural frequency of the torsional pendulum?
Engineering
1 answer:
IRISSAK [1]3 years ago
7 0

Answer:

natural frequency of the torsional pendulum =  1.4 rad/s

Explanation:

given data

mass = 5 kg

diameter = 50 cm = 0.50 m

so radius R = 0.25 m

length =  1.5 m

torsional spring constant = 0.625 N-m/rad

solution

first we get here moment of inertia that is

moment of inertia = mR²  .........1

moment of inertia = 5 × 0.25²

moment of inertia  = 0.3125 kg-m²

so now we get here natural frequency of the torsional pendulum that is

natural frequency of the torsional pendulum = \sqrt{\frac{Kt}{I} }    ..................2

here Kt is torsional spring constant  and I is moment of inertia  

natural frequency of the torsional pendulum = \sqrt{\frac{0.625}{3125} }  

natural frequency of the torsional pendulum =  1.4 rad/s

You might be interested in
Someone has suggested that the air-standard Otto cycle is more accurate if the two polytropic processes are replaced with isentr
omeli [17]

Answer:

q_net,in = 585.8 KJ/kg

q_net,out = 304 KJ/kg

n = 0.481

Explanation:

Given:

- The compression ratio r = 8

- The pressure at state 1, P_1 = 95 KPa

- The minimum temperature at state 1, T_L = 15 C

- The maximum temperature T_H = 900 C

- Poly tropic index n = 1.3

Find:

a) Determine the heat transferred to and rejected from this cycle

b) cycle’s thermal efficiency

Solution:

- For process 1-2, heat is rejected to sink throughout. The Amount of heat rejected q_1,2, can be computed by performing a Energy balance as follows:

                                   W_out - Q_out = Δ u_1,2

- Assuming air to be an ideal gas, and the poly-tropic compression process is isentropic:

                         c_v*(T_2 - T_L) = R*(T_2 - T_L)/n-1 - q_1,2

- Using polytropic relation we will convert T_2 = T_L*r^(n-1):

                  c_v*(T_L*r^(n-1) - T_L) = R*(T_1*r^(n-1) - T_L)/n-1 - q_1,2

- Hence, we have:

                             q_1,2 = T_L *(r^(n-1) - 1)* ( (R/n-1) - c_v)

- Plug in the values:

                             q_1,2 = 288 *(8^(1.3-1) - 1)* ( (0.287/1.3-1) - 0.718)

                            q_1,2= 60 KJ/kg

- For process 2-3, heat is transferred into the system. The Amount of heat added q_2,3, can be computed by performing a Energy balance as follows:

                                          Q_in = Δ u_2,3

                                         q_2,3 = u_3 - u_2

                                         q_2,3 = c_v*(T_H - T_2)  

- Again, using polytropic relation we will convert T_2 = T_L*r^(n-1):

                                         q_2,3 = c_v*(T_H - T_L*r^(n-1) )    

                                         q_2,3 = 0.718*(1173-288*8(1.3-1) )

                                        q_2,3 = 456 KJ/kg

- For process 3-4, heat is transferred into the system. The Amount of heat added q_2,3, can be computed by performing a Energy balance as follows:

                                     q_3,4 - w_in = Δ u_3,4

- Assuming air to be an ideal gas, and the poly-tropic compression process is isentropic:

                           c_v*(T_4 - T_H) = - R*(T_4 - T_H)/1-n +  q_3,4

- Using polytropic relation we will convert T_4 = T_H*r^(1-n):

                  c_v*(T_H*r^(1-n) - T_H) = -R*(T_H*r^(1-n) - T_H)/n-1 + q_3,4

- Hence, we have:

                             q_3,4 = T_H *(r^(1-n) - 1)* ( (R/1-n) + c_v)

- Plug in the values:

                             q_3,4 = 1173 *(8^(1-1.3) - 1)* ( (0.287/1-1.3) - 0.718)

                            q_3,4= 129.8 KJ/kg

- For process 4-1, heat is lost from the system. The Amount of heat rejected q_4,1, can be computed by performing a Energy balance as follows:

                                          Q_out = Δ u_4,1

                                         q_4,1 = u_4 - u_1

                                         q_4,1 = c_v*(T_4 - T_L)  

- Again, using polytropic relation we will convert T_4 = T_H*r^(1-n):

                                         q_4,1 = c_v*(T_H*r^(1-n) - T_L )    

                                         q_4,1 = 0.718*(1173*8^(1-1.3) - 288 )

                                        q_4,1 = 244 KJ/kg

- The net gain in heat can be determined from process q_3,4 & q_2,3:

                                         q_net,in = q_3,4+q_2,3

                                         q_net,in = 129.8+456

                                         q_net,in = 585.8 KJ/kg

- The net loss of heat can be determined from process q_1,2 & q_4,1:

                                         q_net,out = q_4,1+q_1,2

                                         q_net,out = 244+60

                                         q_net,out = 304 KJ/kg

- The thermal Efficiency of a Otto Cycle can be calculated:

                                         n = 1 - q_net,out / q_net,in

                                         n = 1 - 304/585.8

                                         n = 0.481

6 0
3 years ago
stimate the maximum efficiency of an automobile engine that has a compression ratio of 5:1.0. Assume the engine operates accordi
Fed [463]

Answer:

Efficiency based on Otto cycle.

Effotto = 47.47%

Explanation:

Efficiency based on Otto cycle.

effotto = 1 – (V2 / V1)^γ-1

effotto = 1 – (1 / 5)^1.4 - 1

effotto = 47.47%

5 0
3 years ago
What is need for using fins?
antiseptic1488 [7]

Answer: It is a term of heat transfer process in which fins are surface that are the extension of the object to work for the heat exchangers to increase the heat exchanging rate.

 Explanation: Fins are considered to help the heat exchanger surface to lead the process of heat transfer by increasing the are of the surface which is exposed to the surroundings. Fins work really well with materials having high thermal conductivity and will  be more effective. They are preferred because they increase the rate of exchange of heat by increment in the convection.

7 0
3 years ago
What can be the main disadvantage of pulse amplitude modulation?​
Feliz [49]

Answer:

transmission bandwidth required is very large.

Explanation:

4 0
2 years ago
What is Traction Control System?
Nady [450]

Answer:

A traction control system is a secondary function of electronic stability control on production motor vehicles, designed to prevent loss of traction of the driven road wheels.

8 0
2 years ago
Other questions:
  • A circular ceramic plate that can be modeled as a blackbody is being heated by an electrical heater. The plate is 30 cm in diame
    15·1 answer
  • the AADT for a section of suburban freeway is 150000 veh/day. Assuming this is an urban radial facility, what range of direction
    7·1 answer
  • 4. Which of the following is the first thing you should do when attempting
    13·2 answers
  • what is an example of an innovative solution to an engineering problem? Explain briefly why you chose this answer.
    14·1 answer
  • Which word from the passage best explains what the web in the passage symbolizes
    10·1 answer
  • Which statement is true about the future of space travel?
    15·1 answer
  • Architecture reflects multidisciplinary
    13·1 answer
  • The only way to know if a design will work in real-world conditions is to build a model, or prototype, based on the plan. This i
    7·2 answers
  • What are the inputs and outputs of a sailboat?
    6·1 answer
  • When starting up a dual fuel system, the temperature rise method for determining airflow cannot be used with the compressor cycl
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!