Answer:
you have to shake the soda up
Answer:
The heat capacity for the sample is 0.913 J/°C
Explanation:
This is the formula for heat capacity that help us to solve this:
Q / (Final T° - Initial T°) = c . m
where m is mass and c, the specific heat of the substance
27.4 J / (80°C - 50°C) = c . 6.2 g
[27.4 J / (80°C - 50°C)] / 6.2 g = c
27.4 J / 30°C . 1/6.2g = c
0.147 J/g°C = c
Therefore, the heat capacity is 0.913 J/°C
Answer:
6 Electrons r smaller than a proton or a neutron
Answer:
Explanation:
When an electron jumps from one energy level to a lower energy level some energy is released in the form of a photon.
The difference in energy between the two levels is the energy of the photon and that energy is related to the frequency of the photon by the Einstein - Planck equation:
Where,
- E = energy of the photon,
- h = 6.626×10⁻³⁴ J.s, Planck constant, and
- ν = frequency of the photon.
So, to find the frequency you must first find the energy.
The transition energy can be calculated using the formula:
Where E₀ = 13.6 eV ( 1 eV = 1.602×10⁻¹⁹ Joules) and n = 1,2,3,...
So, the transition energy between n = 4 and n = 3 will be:
- ΔE = - E₀ [ 1/4² - 1/3²] = - 13.6 eV [1/16 - 1/9] = 0.6611. . .eV
- ΔE = 1.602×10⁻¹⁹ Joules/eV × 0.6611... eV = 1.0591 ×10⁻¹⁹ Joules
Now you can use the Einstein - Planck equation:
- ν = 1.0591 ×10⁻¹⁹ J / 6.626×10⁻³⁴ J.s = 1.60×10¹⁴ s⁻¹ (rounded to 3 significant figures).
Answer:
FLASK B WHICH CONTAINS CO2 HAS THE HIGHEST NUMBER OF MOLECULES AS IT CONTAINS THE HIGHEST MOLECULAR MASS OF 44 G/MOL.
Explanation:
Flask A contains CH4
Flask B contaims CO2
Flask C contains N2
To know the flask containing the largest number of molecules, we find the molar mass of the molecules in the flask and the largest is the one with the highest number of the relative molecular mass.
Molecular Mass of CH4 (C = 12, H =1) = ( 12 + 1*4) g/mol
= 16 g/mol
Molecular mass of CO2 (C= 12, 0= 16) = (12 + 16*2) g/mol
= 12 + 32 g/mol
= 44 g/mol
Molecular mass of N2 (N=14) = 14 * 2 g/mol
= 28 g/mol
Hence, the flask with the largest number of molecules is the flask with the highest relative molecular mass. The highest molecular mass is 44 g/mol and it is for the gas CO2 in Flask B.
So therefore, Flask B has the highest number of molecules in it.