GIVEN:
Amplitude, A = 0.1mm
Force, F =1 N
mass of motor, m = 120 kg
operating speed, N = 720 rpm
=
Formula Used:

Solution:
Let Stiffness be denoted by 'K' for each mounting, then for 4 mountings it is 4K
We know that:

so,
= 75.39 rad/s
Using the given formula:
Damping is negligible, so, 
will give the tranfer function
Therefore,
= 
= 
Required stiffness coefficient, K = 173009 N/m = 173.01 N/mm
Answer:
class TriangleNumbers
{
public static void main (String[] args)
{
for (int number = 1; number <= 10; ++number) {
int sum = 1;
System.out.print("1");
for (int summed = 2; summed <= number; ++summed) {
sum += summed;
System.out.print(" + " + Integer.toString(summed));
}
System.out.print(" = " + Integer.toString(sum) + '\n');
}
}
}
Explanation:
We need to run the code for each of the 10 lines. Each time we sum numbers from 1 to n. We start with 1, then add numbers from 2 to n (and print the operation). At the end, we always print the equals sign, the sum and a newline character.
Yes i is the time of the day you get to frost the moon and back and then you can come over and then go to hang out with me me and then go to hang out
Answer:
The flux (volume of water per unit time) through the hoop will also double.
Explanation:
The flux = volume of water per unit time = flow rate of water through the hoop.
The Flow rate of water through the hoop is proportional to the area of the hoop, and the velocity of the water through the hoop.
This means that
Flow rate = AV
where A is the area of the hoop
V is the velocity of the water through the hoop
This flow rate = volume of water per unit time = Δv/Δt =Q
From all the above statements, we can say
Q = AV
From the equation, if we double the area, and the velocity of the stream of water through the hoop does not change, then, the volume of water per unit time will also double or we can say increases by a factor of 2