Answer:
The work transfer per unit mass is approximately 149.89 kJ
The heat transfer for an adiabatic process = 0
Explanation:
The given information are;
P₁ = 1 atm
T₁ = 70°F = 294.2611 F
P₂ = 5 atm
γ = 1.5
Therefore, we have for adiabatic system under compression

Therefore, we have;

The p·dV work is given as follows;

Therefore, we have;
Taking air as a diatomic gas, we have;

The molar mass of air = 28.97 g/mol
Therefore, we have

The work done per unit mass of gas is therefore;

The work transfer per unit mass ≈ 149.89 kJ
The heat transfer for an adiabatic process = 0.
Answer:
a) 
Explanation:
a) Let consider that heat pump is reversible, so that the Coefficient of Performance is:



The minimum heat received by the house must be equal to the heat lost to keep the average temperature constant. Hence:

The minimum power supplied to the heat pump is:



Answer:
Answer for the question:
In , the industries with the most complaints to the Better Business Bureau were banks, cable and satellite television companies, collection agencies, cellular phone providers, and new car dealerships (USA Today, April 16, 2012). The results for a sample of complaints are contained in the DATAfile named BBB. Click on the datafile logo to reference the data."
is explained in the attachment.
Explanation:
Answer:
nothing much what class r u in
Answer:
45.3 MN
Explanation:
The forging force at the end of the stroke is given by
F = Y.π.r².[1 + (2μr/3h)]
The final height, h is given as h = 100/2
h = 50 mm
Next, we find the final radius by applying the volume constancy law
volumes before deformation = volumes after deformation
π * 75² * 2 * 100 = π * r² * 2 * 50
75² * 2 = r²
r² = 11250
r = √11250
r = 106 mm
E = In(100/50)
E = 0.69
From the graph flow, we find that Y = 1000 MPa, and thus, we apply the formula
F = Y.π.r².[1 + (2μr/3h)]
F = 1000 * 3.142 * 0.106² * [1 + (2 * 0.2 * 0.106/ 3 * 0.05)]
F = 35.3 * [1 + 0.2826]
F = 35.3 * 1.2826
F = 45.3 MN