Answer:
power developed by the turbine = 6927.415 kW
Explanation:
given data
pressure = 4 MPa
specific enthalpy h1 = 3015.4 kJ/kg
velocity v1 = 10 m/s
pressure = 0.07 MPa
specific enthalpy h2 = 2431.7 kJ/kg
velocity v2 = 90 m/s
mass flow rate = 11.95 kg/s
solution
we apply here thermodynamic equation that
energy equation that is

put here value with
turbine is insulated so q = 0
so here

solve we get
w = 579700 J/kg = 579.7 kJ/kg
and
W = mass flow rate × w
W = 11.95 × 579.7
W = 6927.415 kW
power developed by the turbine = 6927.415 kW
Answer:
public static int average(int j, int k) {
return (int)(( (long)(i) + (long)(j) ) /2 );
}
Explanation:
The above code returns the average of two integer variables
Line 1 of the code declares a method along with 2 variables
Method declared: average of integer data type
Variables: j and k of type integer, respectively
Line 2 calculates the average of the two variables and returns the value of the average.
The first of two integers to average is j
The second of two integers to average is k
The last parameter ensures average using (j+k)/2
Explanation:
Specific cutting energy:
It the ratio of power required to cut the material to metal removal rate of material.If we take the force required to cut the material is F and velocity of cutting tool is V then cutting power will be the product of force and the cutting tool velocity.
Power P = F x V
Lets take the metal removal rate =MRR
Then the specific energy will be

If we consider that metal removal rate and cutting tool velocity is constant then when we increases the cutting force then specific energy will also increase.
Answer:
The source temperature is 1248 R.
Explanation:
Second law efficiency of the engine is the ratio of actual efficiency to the maximum possible efficiency that is reversible efficiency.
Given:
Temperature of the heat sink is 520 R.
Second law efficiency is 60%.
Actual thermal efficiency is 35%.
Calculation:
Step1
Reversible efficiency is calculated as follows:



Step2
Source temperature is calculated as follows:



T = 1248 R.
The heat engine is shown below:
Thus, the source temperature is 1248 R.
Answer: It is a term of heat transfer process in which fins are surface that are the extension of the object to work for the heat exchangers to increase the heat exchanging rate.
Explanation: Fins are considered to help the heat exchanger surface to lead the process of heat transfer by increasing the are of the surface which is exposed to the surroundings. Fins work really well with materials having high thermal conductivity and will be more effective. They are preferred because they increase the rate of exchange of heat by increment in the convection.