Answer:
this might help
Explanation:
https://science.ksc.nasa.gov/mars/msp98/misc/MCO_MIB_Report.pdf
Answer:
The kinetic energy of the weight is 344.5 J
Explanation:
Given that:
Force = F = 65 newton
distance = d = 5.3 meters
We have to find change in kinetic energy ΔK.E
Now we know that, initially kinetic energy was 0 So the formula we use will be:
Work done = Change in kinetic energy
Mathematically,
W = ΔK.E
As we know W = F . d and ΔK.E = K.E(final) - K.E(initial)
So by putting values:
F . d = K.E(final) - K.E(initial)
F . d = K.E(final)
As K.E(initial) is 0 so by putting values of F and d
(65)* (5.3) = K.E(final)
344.5 J = K.E(final)
So the change in K.E will also be 344.5 J
i hope it will help you!
150
A
Explanation:
V
s
V
p
=
N
s
N
p
(
1
)
N
refers to the number of turns
V
is voltage
s
and
p
refer to the secondary and primary coil.
From the conservation of energy we get:
V
p
I
p
=
V
s
I
s
(
2
)
From
(
1
)
:
V
s
V
p
=
900
00
3
00
=
300
∴
V
s
=
300
V
p
Substituting for
V
s
into
(
2
)
⇒
V
p
I
p
=
300
V
p
×
0.5
∴
I
p
=
150
A
Seems a big current.
Answer:
The mechanical advantage is 3 to 1
Explanation:
A frictionless pulley with three support ropes carries equal tension on each of the ropes thus;
Tension in each pulley rope = T
Total tension in the 3 ropes = 3 × T = 3·T
Direction of the tension forces on each rope = Unidirectional
Total force provided by the 3 ropes = 3·T
Therefore, a force, T, applied at the end of the rope will result in a lifting force of 3·T
Hence, the mechanical advantage = 3·T to T which is presented as follows;

The mechanical advantage = 3 to 1.
Answer: i can see if i can what is the problem
Explanation: