Distance = speed X time
In this example, the speed of the airplane = 840km. The time (that the question is asking)is how far can it travel in 1 hour.
So just plug in your numbers.
Distance = 840km X 1 hour = 840km/hour or 840km for short.
Answer:
Explanation:
according to third equation of motion
2as=vf²-vi²
vf²=2as+vi²
vf=√2as+vi²
vf=√2as+vi
vf=√2*2*4+3
vf=√16+3
vf=4+3=7
so final velocity is 7 m/s
Answer:
How was the result of your physical fitness test in Flexibility and muscular
strength compared to your previous assessments?
Explanation:
178 centimeters is exactly, precisely, the same length as ...
-- 0.00178 kilometer
-- 1.78 meters
-- 1,780 millimeters
-- 1,780,000 micrometers
-- 1,780,000,000 nanometers
Answer:
x(t) = d*cos ( wt )
w = √(k/m)
Explanation:
Given:-
- The mass of block = m
- The spring constant = k
- The initial displacement = xi = d
Find:-
- The expression for displacement (x) as function of time (t).
Solution:-
- Consider the block as system which is initially displaced with amount (x = d) to left and then released from rest over a frictionless surface and undergoes SHM. There is only one force acting on the block i.e restoring force of the spring F = -kx in opposite direction to the motion.
- We apply the Newton's equation of motion in horizontal direction.
F = ma
-kx = ma
-kx = mx''
mx'' + kx = 0
- Solve the Auxiliary equation for the ODE above:
ms^2 + k = 0
s^2 + (k/m) = 0
s = +/- √(k/m) i = +/- w i
- The complementary solution for complex roots is:
x(t) = [ A*cos ( wt ) + B*sin ( wt ) ]
- The given initial conditions are:
x(0) = d
d = [ A*cos ( 0 ) + B*sin ( 0 ) ]
d = A
x'(0) = 0
x'(t) = -Aw*sin (wt) + Bw*cos(wt)
0 = -Aw*sin (0) + Bw*cos(0)
B = 0
- The required displacement-time relationship for SHM:
x(t) = d*cos ( wt )
w = √(k/m)