Vinegar pH 3.2: Weak acid
Battery acid pH 0.5: Strong acid
Shampoo pH 7.0: Neutral
Ammonia pH 11.1 Strong base
Answer : It take time for the concentration to become 0.180 mol/L will be, 277.8 s
Explanation :
The integrated rate law equation for second order reaction follows:
![k=\frac{1}{t}\left (\frac{1}{[A]}-\frac{1}{[A]_o}\right)](https://tex.z-dn.net/?f=k%3D%5Cfrac%7B1%7D%7Bt%7D%5Cleft%20%28%5Cfrac%7B1%7D%7B%5BA%5D%7D-%5Cfrac%7B1%7D%7B%5BA%5D_o%7D%5Cright%29)
where,
k = rate constant = 
t = time taken = ?
[A] = concentration of substance after time 't' = 0.180 mol/L
= Initial concentration = 0.360 mol/L
Putting values in above equation, we get:


Hence, it take time for the concentration to become 0.180 mol/L will be, 277.8 s
Answer:
NH₃
M = n/V(L)
0.844 mol (Both numbers have 3 significant figures so the result has 3 significant figures as well)
Explanation:
Step 1: Given and required data
- Volume of solution (V): 375. mL
- Molar concentration of the solution (M): 2.25 M
- Chemical formula for ammonia: NH₃
Step 2: Calculate the moles (n) of ammonia (solute)
Molarity is equal to the moles of solute divided by the liters of solution.
M = n/V(L)
n = M × V(L)
n = 2.25 mol/L × 0.375 L = 0.844 mol (Both numbers have 3 significant figures so the result has 3 significant figures as well)
Answer:
Explanation:
Hydrogen has 1 proton and one nuetron
Oxygen has 8 protons nad 8 neutrons