Answer:A. Increases
Explanation:
Heating or an increase in temperature increases the kinetic energy of particles thereby increasing their motion and how they relate and react with one another.
Increase in the temperature of the solvent is directly proportional to the rate of dissolution. The rate of dissolution increases due to the increase in kinetic energy. This makes the solvent particles interact faster with the solute particles thereby increasing the dissolution rate.
Acute radiation can be healed by developing cells (white blood cells) in the body. During Chronic radiation immense amount of energy is released into your body causing division and break down of cells which can cause cancer and internal bleeding and cannot be cured depending on the amount released.
Molar mass:
KCl = 74.55 g/mol
KClO3 = 122. 55 g/mol
<span>Calculation of the mass of KClO3 :</span>
<span>2 KClO3 = 2 KCl + 3 O2</span>
2* 122.55 g KClO3 ------------------ 2 * 74.55 g KCl
mass KClO3 ?? --------------------- 25.6 g KCl
mass KClO3 = 25.6 * 2 * 122.55 / 2 * 74.55
mass KClO3 = 6274.56 / 149.1
mass = 42.082 g of KClO3
Therefore:
1 mole KClO3 ---------------------- 122.55 g
?? moles KClO3 ------------------- 42.082 g
moles KClO3 = 42.082 * 1 / 122.55
moles KClO3 = 42.082 / 122.55
=> 0.343 moles of KClO3
Answer C
hope this helps!
What best describes the result is a mixture