We use a fundamental kinematic equation as follows:
V = Vo + g*t.
<span>Tr = (V-Vo)/g = (0-10)/-10 = 1 s. = </span><span>time to reach max. height </span>
<span>Tf = Tr = 1 s. = Fall time or time to fall back to edge of bldg. </span>
<span>3-Tr-Tf = 3-1-1 = 1 s. Below edge of bldg. </span>
<span>d = Vo*t + 0.5g*t^2. </span>
<span>d = 10*1 + 5*1^2 = 15 m. <---- OPTION C</span>
Answer:
465m.
Explanation:
Convert all units to meters. So,
328 + 137 = 465m.
Answer:
Explanation:
Ionization Energy Trends
Ionization energy is the energy required to remove an electron from a neutral atom in its gaseous phase. Conceptually, ionization energy is the opposite of electronegativity. ... As a result, it is easier for valence shell electrons to ionize, and thus the ionization energy decreases down a group
Answer:
Fr = 26.83 [N]
Explanation:
To solve this problem we must use the Pythagorean theorem, since the forces are vector quantities, that is, they have magnitude and density. Therefore the Pythagorean theorem is suitable for the solution of this problem.
![F_{r}=\sqrt{(12)^{2}+(24)^{2} } \\F_{r}=26.83[N]](https://tex.z-dn.net/?f=F_%7Br%7D%3D%5Csqrt%7B%2812%29%5E%7B2%7D%2B%2824%29%5E%7B2%7D%20%20%7D%20%5C%5CF_%7Br%7D%3D26.83%5BN%5D)